南华大学学报(自然科学版)
南華大學學報(自然科學版)
남화대학학보(자연과학판)
Journal of University of Souht China (Science & Technology)
2015年
3期
73-77
,共5页
李丽华%汪凤麟%陈灵娜%陈俊熹
李麗華%汪鳳麟%陳靈娜%陳俊熹
리려화%왕봉린%진령나%진준희
彩色图像分割%视觉显著性%视觉特征
綵色圖像分割%視覺顯著性%視覺特徵
채색도상분할%시각현저성%시각특정
color image segmentation%visual saliency%visual features
为了提高图像显著性检测的准确性,从数学模型上探索显著性的多特征空间。利用多尺度特征提取算法获得低层视觉特征,对特征矩阵用低秩矩阵恢复理论提取显著图,并在自底向上模型基础上融合了高层视觉特征,由高层视觉特征构成一幅权重的显著图。提高了显著度和显著目标的检测性能。通过自适应阈值算法对视觉显著目标进行分割。实验结果表明,该模型比传统的模型提取的显著目标更完整、更准确。
為瞭提高圖像顯著性檢測的準確性,從數學模型上探索顯著性的多特徵空間。利用多呎度特徵提取算法穫得低層視覺特徵,對特徵矩陣用低秩矩陣恢複理論提取顯著圖,併在自底嚮上模型基礎上融閤瞭高層視覺特徵,由高層視覺特徵構成一幅權重的顯著圖。提高瞭顯著度和顯著目標的檢測性能。通過自適應閾值算法對視覺顯著目標進行分割。實驗結果錶明,該模型比傳統的模型提取的顯著目標更完整、更準確。
위료제고도상현저성검측적준학성,종수학모형상탐색현저성적다특정공간。이용다척도특정제취산법획득저층시각특정,대특정구진용저질구진회복이론제취현저도,병재자저향상모형기출상융합료고층시각특정,유고층시각특정구성일폭권중적현저도。제고료현저도화현저목표적검측성능。통과자괄응역치산법대시각현저목표진행분할。실험결과표명,해모형비전통적모형제취적현저목표경완정、경준학。
In order to improve the accuracy of image saliency detection,we explore the con-sistency of multi-features space from the view of mathematical model. We use the multi-scale feature extraction algorithm to obtain the low level visual features,introduce the theo-ry of low rank matrix recovery into the saliency map extraction,and incorporate the low lev-el visual features and the high-level visual features. The high-level visual features are fused to compose a prior map and are treated as a prior term in the objective function to improve the performance. The image saliency objects are segmented by using the adaptive threshold algorithm. Extensive experiments show that our model can comfortably achieve more per-formance to the existing methods.