辽宁师范大学学报(自然科学版)
遼寧師範大學學報(自然科學版)
료녕사범대학학보(자연과학판)
Journal of Liaoning Normal University (Natural Science Edition)
2015年
3期
301-305
,共5页
极限环%Poincare分支%可积非Hamilton二次系统
極限環%Poincare分支%可積非Hamilton二次繫統
겁한배%Poincare분지%가적비Hamilton이차계통
limit cycle%Poincare bifurcation%integrable non-Hamilton quadratic system
讨论了一类可积非 Hamilton二次系统经二次扰动的Poincare分支。系统 x·=-y+ ax2+ by2,·y= x 1-2 y ,经二次扰动的Poincare分支问题当 a=-3时已经解决, a=±4时只有一些初步结果。当 a=-2,b≠0时,其A ble积分的被积函数是对数函数的平方根,Able积分所对应的Picard‐Fuchs方程是无穷维的,对应的Poincare分支问题目前尚未得到解决。对于 a=-2,b=0时的情形,通过方程变换和计算A ble积分等方法,证明了此时上述系统的Poincare分支至多能分支出2个极限环。
討論瞭一類可積非 Hamilton二次繫統經二次擾動的Poincare分支。繫統 x·=-y+ ax2+ by2,·y= x 1-2 y ,經二次擾動的Poincare分支問題噹 a=-3時已經解決, a=±4時隻有一些初步結果。噹 a=-2,b≠0時,其A ble積分的被積函數是對數函數的平方根,Able積分所對應的Picard‐Fuchs方程是無窮維的,對應的Poincare分支問題目前尚未得到解決。對于 a=-2,b=0時的情形,通過方程變換和計算A ble積分等方法,證明瞭此時上述繫統的Poincare分支至多能分支齣2箇極限環。
토론료일류가적비 Hamilton이차계통경이차우동적Poincare분지。계통 x·=-y+ ax2+ by2,·y= x 1-2 y ,경이차우동적Poincare분지문제당 a=-3시이경해결, a=±4시지유일사초보결과。당 a=-2,b≠0시,기A ble적분적피적함수시대수함수적평방근,Able적분소대응적Picard‐Fuchs방정시무궁유적,대응적Poincare분지문제목전상미득도해결。대우 a=-2,b=0시적정형,통과방정변환화계산A ble적분등방법,증명료차시상술계통적Poincare분지지다능분지출2개겁한배。
This paper aims at discussing the Poincare bifurcations of a class of integrable non‐Hamilton quadratic system disturbed by quadratic polynomial .It has been solved that Poincare bifurcations of the system x· = -y+ a x2 + b y2 , ·y= x 1-2 y disturbed by quadratic polynomial w hen a= -3 ,Some preliminary results have been obtained w hen a= ± 4 .As a= -2 ,b≠0 ,the integrand of Abel integral is the square root of logarithmic function .The Picard-Fuchs equation corresponding to the Abel integral is infinite dimensional .The corresponding Poincare bifurcation problem is not yet resolved at present .The case a= -2 ,b=0 is mainly discussed in this paper by means of equation transformation and calculating integration etc .It is proved that the system in this case can be bifurcated out at most two limit cycles after a quadratic polynomial disturb‐ance .