南华大学学报(自然科学版)
南華大學學報(自然科學版)
남화대학학보(자연과학판)
Journal of University of Souht China (Science & Technology)
2015年
3期
122-128
,共7页
李国辉%刘永%招国栋%彭洁
李國輝%劉永%招國棟%彭潔
리국휘%류영%초국동%팽길
边坡稳定性%粗糙集%BP神经网络%属性约简%预测
邊坡穩定性%粗糙集%BP神經網絡%屬性約簡%預測
변파은정성%조조집%BP신경망락%속성약간%예측
slope stability%Rough Set%BP neural network%attribute reduction%prediction
从文献资料中收集并整理了45组各类危险边坡数据实例,结合粗糙集理论的数据挖掘功能和BP神经网络理论的非线性映射功能,建立了基于粗糙集-BP神经网络( RS-BPNN)理论的边坡稳定性预测模型.利用粗糙集对离散化后的数据进行了属性约简,利用神经网络对约简前后的数据进行了网络训练和仿真,并对其中五组边坡的安全系数和稳定状态进行了预测.结果表明,未经约简的BP网络安全系数预测的平均误差率为14.51%,约简后的RS-BP网络预测的平均误差率为7.24%,且经过粗糙集约简后边坡的预测状态与边坡的实际状态更加吻合.
從文獻資料中收集併整理瞭45組各類危險邊坡數據實例,結閤粗糙集理論的數據挖掘功能和BP神經網絡理論的非線性映射功能,建立瞭基于粗糙集-BP神經網絡( RS-BPNN)理論的邊坡穩定性預測模型.利用粗糙集對離散化後的數據進行瞭屬性約簡,利用神經網絡對約簡前後的數據進行瞭網絡訓練和倣真,併對其中五組邊坡的安全繫數和穩定狀態進行瞭預測.結果錶明,未經約簡的BP網絡安全繫數預測的平均誤差率為14.51%,約簡後的RS-BP網絡預測的平均誤差率為7.24%,且經過粗糙集約簡後邊坡的預測狀態與邊坡的實際狀態更加吻閤.
종문헌자료중수집병정리료45조각류위험변파수거실례,결합조조집이론적수거알굴공능화BP신경망락이론적비선성영사공능,건립료기우조조집-BP신경망락( RS-BPNN)이론적변파은정성예측모형.이용조조집대리산화후적수거진행료속성약간,이용신경망락대약간전후적수거진행료망락훈련화방진,병대기중오조변파적안전계수화은정상태진행료예측.결과표명,미경약간적BP망락안전계수예측적평균오차솔위14.51%,약간후적RS-BP망락예측적평균오차솔위7.24%,차경과조조집약간후변파적예측상태여변파적실제상태경가문합.
Forty-five sets of various data of dangerous slope were collected and arranged from literature in this paper, and prediction model of slope stability based on RS-BPNN Theory was established by using data mining functions of Rough Set Theory and nonlinear mapping function of BP Neural Network Theory. BP Neural Network was employed to train and simulate the discrete data,before and after that had been reduced by using attribute re-duction based on Rough Set. The results show that the average error rate of safety coeffi-cient prediction of BP Network and RS-BP Network is 14 . 51% and 7 . 24% with or without attribute reduction,respectively,and the predicted state of the slope is more consistent with the actual state through the use of attribute reduction based on Rough Set.