天津大学学报
天津大學學報
천진대학학보
Journal of Tianjin University
2015年
9期
804-810
,共7页
毕凤荣%陆地%邵康%张剑
畢鳳榮%陸地%邵康%張劍
필봉영%륙지%소강%장검
装载机司机位置处噪声%盲源分离%特征识别%经验模态分解%独立分量分析%连续小波变换
裝載機司機位置處譟聲%盲源分離%特徵識彆%經驗模態分解%獨立分量分析%連續小波變換
장재궤사궤위치처조성%맹원분리%특정식별%경험모태분해%독립분량분석%련속소파변환
loader driver location noise%blind source separation%feature identification%empirical mode decompo-sition%independent component analysis%continuous wavelet transform
为了分离装载机的噪声源,采用集合经验模态分解(EEMD)、独立分量分析(ICA)和连续小波变换(CWT)技术相结合的方法,对装载机司机位置处噪声信号进行了盲源分离和声源识别研究.针对单一通道噪声信号进行盲源分离,将其分解成一系列独立分量.在削弱了传统经验模态分解(EMD)算法处理噪声信号时产生的模态混叠现象的同时,克服了独立分量分析方法要求传感器数目必须大于等于分离出分量数目的限制;借助连续小波变换良好的时频定位特性,对ICA分离结果进行时频分析.结合时频分析结果和各噪声源信号的频谱结构,确定了各独立分量与装载机不同噪声源的对应关系.结果表明,这些独立分量分别对应着装载机的燃烧噪声、冷却风扇辐射噪声及排气噪声等噪声源.
為瞭分離裝載機的譟聲源,採用集閤經驗模態分解(EEMD)、獨立分量分析(ICA)和連續小波變換(CWT)技術相結閤的方法,對裝載機司機位置處譟聲信號進行瞭盲源分離和聲源識彆研究.針對單一通道譟聲信號進行盲源分離,將其分解成一繫列獨立分量.在削弱瞭傳統經驗模態分解(EMD)算法處理譟聲信號時產生的模態混疊現象的同時,剋服瞭獨立分量分析方法要求傳感器數目必鬚大于等于分離齣分量數目的限製;藉助連續小波變換良好的時頻定位特性,對ICA分離結果進行時頻分析.結閤時頻分析結果和各譟聲源信號的頻譜結構,確定瞭各獨立分量與裝載機不同譟聲源的對應關繫.結果錶明,這些獨立分量分彆對應著裝載機的燃燒譟聲、冷卻風扇輻射譟聲及排氣譟聲等譟聲源.
위료분리장재궤적조성원,채용집합경험모태분해(EEMD)、독립분량분석(ICA)화련속소파변환(CWT)기술상결합적방법,대장재궤사궤위치처조성신호진행료맹원분리화성원식별연구.침대단일통도조성신호진행맹원분리,장기분해성일계렬독립분량.재삭약료전통경험모태분해(EMD)산법처리조성신호시산생적모태혼첩현상적동시,극복료독립분량분석방법요구전감기수목필수대우등우분리출분량수목적한제;차조련속소파변환량호적시빈정위특성,대ICA분리결과진행시빈분석.결합시빈분석결과화각조성원신호적빈보결구,학정료각독립분량여장재궤불동조성원적대응관계.결과표명,저사독립분량분별대응착장재궤적연소조성、냉각풍선복사조성급배기조성등조성원.
In order to separate noise sources of loader,ensemble empirical mode decomposition(EEMD), independent component analysis(ICA)and continuous wavelet transform(CWT)technologies were used to study the blind source separation and noise source identification of loader driver location noise. Blind source separation for sin-gle-channel noise signal was adopted to obtain a series of independent components. This method overcame the prob-lem that the number of sensors must be larger than or equal to the number of separated components. At the same time,it weakened the model mix superposition problem which usually occurs when processing noise signal with the algorithm of empirical mode decomposition(EMD). Continuous wavelet transform was used for its better time-frequency localization features to analyze the time-frequency characteristics of ICA results. Combining the results with different noise source frequency spectrums,the corresponding relationship was determined. Results show that these independent components correspond to combustion noise,fans noise and exhaust noise of the loader respectively.