合肥工业大学学报(自然科学版)
閤肥工業大學學報(自然科學版)
합비공업대학학보(자연과학판)
Journal of Hefei University of Technology (Natural Science)
2015年
9期
1281-1286
,共6页
散乱数据%自然样条%数值解
散亂數據%自然樣條%數值解
산란수거%자연양조%수치해
scattered data%natural spline%numerical solution
文章考虑对 d维散乱数据的一种带自然边界条件多元多项式样条插值问题,在使目标泛函极小的情况下,用Hilbert空间样条函数方法得出插值解可表示为一个多元多项式,其表示形式简单,且系数可由系数矩阵对称的线性方程组确定,最后将其应用于求微分方程数值解,并举例说明了方法的有效性。
文章攷慮對 d維散亂數據的一種帶自然邊界條件多元多項式樣條插值問題,在使目標汎函極小的情況下,用Hilbert空間樣條函數方法得齣插值解可錶示為一箇多元多項式,其錶示形式簡單,且繫數可由繫數矩陣對稱的線性方程組確定,最後將其應用于求微分方程數值解,併舉例說明瞭方法的有效性。
문장고필대 d유산란수거적일충대자연변계조건다원다항식양조삽치문제,재사목표범함겁소적정황하,용Hilbert공간양조함수방법득출삽치해가표시위일개다원다항식,기표시형식간단,차계수가유계수구진대칭적선성방정조학정,최후장기응용우구미분방정수치해,병거례설명료방법적유효성。
A kind of interpolation for scattered data of d‐D by multivariate polynomial spline with natu‐ral boundary conditions is considered .Using the spline ways of Hilbert space ,the interpolation solu‐tion is constructed as a multivariate polynomial with simple expression .It makes the given objective function minimized and its coefficients be decided by a linear system with symmetry coefficient matrix . Finally ,the interpolation spline is used to solve differential equations and get the numerical solutions . Some examples are presented to illustrate the effectiveness of the method .