科技和产业
科技和產業
과기화산업
Science Technology and Industry
2015年
9期
145-148
,共4页
温特线性与季节性指数平滑法%平滑常数%气温
溫特線性與季節性指數平滑法%平滑常數%氣溫
온특선성여계절성지수평활법%평활상수%기온
winter linear and seasonal exponential smoothing%the smoothing constant%monthly average temperature
由于月平均气温是以一年为周期呈现周期性波动,因此用温特线性与季节性指数平滑法对气温进行预测。以福州市2000—2012年月平均气温数据为样本数据,利用M A T L AB软件通过建立温特线性与季节性指数平滑预测模型对福州市2013年1—12月份的气温进行预测,并通过计算机的迭代运算,得到一组最佳的平滑常数(α,β,γ),使得预测模型的均方误差M S E最小。研究结果显示,福州市月平均气温预测模型的平滑常数为(0.5,0.05,0.05),均方误差MSE为1.9097,预测精度较高。
由于月平均氣溫是以一年為週期呈現週期性波動,因此用溫特線性與季節性指數平滑法對氣溫進行預測。以福州市2000—2012年月平均氣溫數據為樣本數據,利用M A T L AB軟件通過建立溫特線性與季節性指數平滑預測模型對福州市2013年1—12月份的氣溫進行預測,併通過計算機的迭代運算,得到一組最佳的平滑常數(α,β,γ),使得預測模型的均方誤差M S E最小。研究結果顯示,福州市月平均氣溫預測模型的平滑常數為(0.5,0.05,0.05),均方誤差MSE為1.9097,預測精度較高。
유우월평균기온시이일년위주기정현주기성파동,인차용온특선성여계절성지수평활법대기온진행예측。이복주시2000—2012년월평균기온수거위양본수거,이용M A T L AB연건통과건립온특선성여계절성지수평활예측모형대복주시2013년1—12월빈적기온진행예측,병통과계산궤적질대운산,득도일조최가적평활상수(α,β,γ),사득예측모형적균방오차M S E최소。연구결과현시,복주시월평균기온예측모형적평활상수위(0.5,0.05,0.05),균방오차MSE위1.9097,예측정도교고。
Due to the monthly average temperature periodic fluctuations is based on one year period ,so this article uses the Winter Linear and Sea‐sonal Exponential Smoothing to forecast the temperature. Taking Fuzhou 2000 -2012 monthly mean temperature data as sample data ,using the MATLAB software by establishing Winter Linear and Seasonal Exponential Smoothing Forecasting Model forecast the temperature of Fuzhou Jan ‐uary 2013 - December ,and iterative computation by computer ,get a set of optimal smoothing constant (α,β,γ) ,makes the prediction model of minimum Mean Square Error (MSE).Fuzhou monthly average temperature prediction model for the smoothing constant (0.5 ,0.05 ,0.5) ,Mean Square Error is 1.9097 ,higher prediction precision .