计算机工程与应用
計算機工程與應用
계산궤공정여응용
Computer Engineering and Applications
2015年
19期
173-177,188
,共6页
生物特征识别%步态识别%质心%轮廓关键点%动态时间规整(DTW)
生物特徵識彆%步態識彆%質心%輪廓關鍵點%動態時間規整(DTW)
생물특정식별%보태식별%질심%륜곽관건점%동태시간규정(DTW)
biometrics feature recognition%gait recognition%body centroid%key point of silhouette%Dynamic Time Warping(DTW)
提出了一种基于人体的质心和轮廓关键点的步态表示方法,用三帧差分法对运动目标进行检测,然后确定人体的质心和外轮廓上头顶、双足的边缘点的位置,对每一帧图像提取4个特征参数:质心高度、质心到头顶边缘点的距离、质心到左足边缘点的距离、质心到右足边缘点的距离。选取一个周期的步态特征用自动规整算法(Dynamic Time Warping,DTW)进行识别。就计算代价而言,步态特征参数维数少,降低了算法复杂度,步态识别阶段所用算法不像BP、HMM等算法要进行模型参数的训练,而是直接针对提取的特征进行模板匹配,可以保证步态识别的实时性。实验结果表明该算法不仅获得了令人鼓舞的识别性能,并且对衣着具有一定的鲁棒性。
提齣瞭一種基于人體的質心和輪廓關鍵點的步態錶示方法,用三幀差分法對運動目標進行檢測,然後確定人體的質心和外輪廓上頭頂、雙足的邊緣點的位置,對每一幀圖像提取4箇特徵參數:質心高度、質心到頭頂邊緣點的距離、質心到左足邊緣點的距離、質心到右足邊緣點的距離。選取一箇週期的步態特徵用自動規整算法(Dynamic Time Warping,DTW)進行識彆。就計算代價而言,步態特徵參數維數少,降低瞭算法複雜度,步態識彆階段所用算法不像BP、HMM等算法要進行模型參數的訓練,而是直接針對提取的特徵進行模闆匹配,可以保證步態識彆的實時性。實驗結果錶明該算法不僅穫得瞭令人鼓舞的識彆性能,併且對衣著具有一定的魯棒性。
제출료일충기우인체적질심화륜곽관건점적보태표시방법,용삼정차분법대운동목표진행검측,연후학정인체적질심화외륜곽상두정、쌍족적변연점적위치,대매일정도상제취4개특정삼수:질심고도、질심도두정변연점적거리、질심도좌족변연점적거리、질심도우족변연점적거리。선취일개주기적보태특정용자동규정산법(Dynamic Time Warping,DTW)진행식별。취계산대개이언,보태특정삼수유수소,강저료산법복잡도,보태식별계단소용산법불상BP、HMM등산법요진행모형삼수적훈련,이시직접침대제취적특정진행모판필배,가이보증보태식별적실시성。실험결과표명해산법불부획득료령인고무적식별성능,병차대의착구유일정적로봉성。
This paper proposes a method for gait representation based on body’s centroid and outline’s key points. Firstly a three-frame difference method is given to detect moving targets. Then the body centroid, the edge points of feet and head are found, extracting four parameters of each frame:the height of centroid, the distance between body centroid and the edge point of head, the distance between body centroid and the edge point of left foot, the distance between body cen-troid and the edge point of right foot. It selects a cycle of gait sequence, using automatic warping algorithm Dynamic Time Warping(DTW)for recognition. In terms of computational cost, less dimension parameters reduce the complexity of the algorithm. Unlike BP, HMM trains the model parameters first, this algorithm of gait recognition uses template matching directly, guarantees the real-time performance of gait recognition. Experimental results show that the algorithm not only wins encouraging recognition performance, but also proves robust for objects’clothes to a certain extent.