计算机工程与应用
計算機工程與應用
계산궤공정여응용
Computer Engineering and Applications
2015年
19期
88-92,145
,共6页
P2P流量识别%云计算%粗糙集%朴素贝叶斯
P2P流量識彆%雲計算%粗糙集%樸素貝葉斯
P2P류량식별%운계산%조조집%박소패협사
P2P traffic identication%cloud computing%rough set%Naive Bayesian
由于内存限制使得单机环境下的P2P流量识别方法只能对小规模数据集进行处理,并且基于朴素贝叶斯分类的识别方法所使用的属性特征均为人工选择,因此,识别率受到了限制并且缺乏客观性。基于以上问题分析提出了云计算环境下的朴素贝叶斯分类算法并改进了在云计算环境下属性约简算法,结合这两个算法实现了对加密P2P流量的细粒度识别。实验结果表明该方法可以高效处理大数据集网络流量,并且有很高的P2P流量识别率,同时结果也具备客观性。
由于內存限製使得單機環境下的P2P流量識彆方法隻能對小規模數據集進行處理,併且基于樸素貝葉斯分類的識彆方法所使用的屬性特徵均為人工選擇,因此,識彆率受到瞭限製併且缺乏客觀性。基于以上問題分析提齣瞭雲計算環境下的樸素貝葉斯分類算法併改進瞭在雲計算環境下屬性約簡算法,結閤這兩箇算法實現瞭對加密P2P流量的細粒度識彆。實驗結果錶明該方法可以高效處理大數據集網絡流量,併且有很高的P2P流量識彆率,同時結果也具備客觀性。
유우내존한제사득단궤배경하적P2P류량식별방법지능대소규모수거집진행처리,병차기우박소패협사분류적식별방법소사용적속성특정균위인공선택,인차,식별솔수도료한제병차결핍객관성。기우이상문제분석제출료운계산배경하적박소패협사분류산법병개진료재운계산배경하속성약간산법,결합저량개산법실현료대가밀P2P류량적세립도식별。실험결과표명해방법가이고효처리대수거집망락류량,병차유흔고적P2P류량식별솔,동시결과야구비객관성。
Due to memory limitations, P2P traffic identification can only deal with small-scale data sets in a stand-alone environment. And all the attribute characteristics used in the P2P traffic identification based on Bayesian classification are artificial selected. Therefore, the recognition rate is both restricted and lack of objectivity. Based on the above analysis, a Naive Bayesian classification algorithm is proposed in the cloud computing environment, and then an attribute reduction algorithm is improved to adapt to the cloud computing environment. Finally, both above algorithms are combined to achieve fine-grained encrypted P2P traffic identification. The experimental results show that this method can efficiently process large data sets of network traffic, and the recognition rate of P2P flow is high, and the results are objective at the same time.