模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Pattern Recognition and Artificial Intelligence
2015年
9期
828-838
,共11页
社会网络%社区结构%基于边密度的聚类%重叠层次社区
社會網絡%社區結構%基于邊密度的聚類%重疊層次社區
사회망락%사구결구%기우변밀도적취류%중첩층차사구
Social Network%Community Structure%Clustering Based on Link Density%Overlapping and Hierarchical Community
高质量重叠层次社区的挖掘和发现已成为社会网络研究热点,为更有效地发现社会网络中具有重叠层次性的社区结构,提出基于增广边簇序列的边社区发现算法( DLC ECS)。在产生包含所有可能密度参数对应的社区结构的增广边簇序列的基础上,找出全局最优的密度参数,发现全局最优的边社区结构,将识别的边社区结构转化为节点社区结构,发现具有重叠结构的社区。在该序列的基础上,提出层次边社区提取算法( HLCE ECS),快速发现序列中的层次边社区结构,将识别的边社区结构转化为节点社区结构,发现同时具有重叠和层次结构的社区。在真实数据集和人工数据集上的实验表明,DLC ECS具有更高的社区发现质量,HLCE ECS能发现有意义的层次边社区结构。
高質量重疊層次社區的挖掘和髮現已成為社會網絡研究熱點,為更有效地髮現社會網絡中具有重疊層次性的社區結構,提齣基于增廣邊簇序列的邊社區髮現算法( DLC ECS)。在產生包含所有可能密度參數對應的社區結構的增廣邊簇序列的基礎上,找齣全跼最優的密度參數,髮現全跼最優的邊社區結構,將識彆的邊社區結構轉化為節點社區結構,髮現具有重疊結構的社區。在該序列的基礎上,提齣層次邊社區提取算法( HLCE ECS),快速髮現序列中的層次邊社區結構,將識彆的邊社區結構轉化為節點社區結構,髮現同時具有重疊和層次結構的社區。在真實數據集和人工數據集上的實驗錶明,DLC ECS具有更高的社區髮現質量,HLCE ECS能髮現有意義的層次邊社區結構。
고질량중첩층차사구적알굴화발현이성위사회망락연구열점,위경유효지발현사회망락중구유중첩층차성적사구결구,제출기우증엄변족서렬적변사구발현산법( DLC ECS)。재산생포함소유가능밀도삼수대응적사구결구적증엄변족서렬적기출상,조출전국최우적밀도삼수,발현전국최우적변사구결구,장식별적변사구결구전화위절점사구결구,발현구유중첩결구적사구。재해서렬적기출상,제출층차변사구제취산법( HLCE ECS),쾌속발현서렬중적층차변사구결구,장식별적변사구결구전화위절점사구결구,발현동시구유중첩화층차결구적사구。재진실수거집화인공수거집상적실험표명,DLC ECS구유경고적사구발현질량,HLCE ECS능발현유의의적층차변사구결구。
The mining and discovery of overlapping and hierarchical communities is a hot topic in the area of social network research. Firstly, an algorithm, discovery of link conmunities based on extended link cluster sequence ( DLC ECS) , is proposed to detect overlapping and hierarchical communities in social networks efficiently. Based on the extended link cluster sequence corresponding to community structures with various densities, the optimal link community is detected after searching for the global optimal density. The link communities are transformed into the node communities, and thus the overlapping communities can be found out. Then, hierarchical link communities extraction based on extended link cluster sequence ( HLCE ECS ) is designed. Hierarchical link communities from the extended link cluster sequence is found by the proposed algorithm. The link communities are transformed into the node communities to find out the overlapping and hierarchical communities. Experimental results on are artificial and real-world datasets demonstrate that DLC ECS algorithm significantly improves the <br> community quality and HLCE ECS algorithm effectively discovers meaningful hierarchical communities.