模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Pattern Recognition and Artificial Intelligence
2015年
9期
802-810
,共9页
张佳%林耀进%林梦雷%刘景华
張佳%林耀進%林夢雷%劉景華
장가%림요진%림몽뢰%류경화
协同过滤%用户群体%倾向性%稀疏性
協同過濾%用戶群體%傾嚮性%稀疏性
협동과려%용호군체%경향성%희소성
Collaborative Filtering%User Group%Tendency%Sparsity
在基于用户的协同过滤算法中,用户评分倾向性和评分矩阵的稀疏性致使难以准确可靠地搜寻目标用户的近邻。基于此,文中提出基于目标用户近邻修正的协同过滤算法。首先定义积极评分和消极评分两类用户群体,选择从目标用户评分倾向性一致的用户群体中寻找其近邻。然后对与目标用户共同评分项数量少而相似度可能高的近邻进行修正,为目标用户寻找更准确的近邻集合。实验表明,文中算法在一定程度上能有效提高推荐质量。
在基于用戶的協同過濾算法中,用戶評分傾嚮性和評分矩陣的稀疏性緻使難以準確可靠地搜尋目標用戶的近鄰。基于此,文中提齣基于目標用戶近鄰脩正的協同過濾算法。首先定義積極評分和消極評分兩類用戶群體,選擇從目標用戶評分傾嚮性一緻的用戶群體中尋找其近鄰。然後對與目標用戶共同評分項數量少而相似度可能高的近鄰進行脩正,為目標用戶尋找更準確的近鄰集閤。實驗錶明,文中算法在一定程度上能有效提高推薦質量。
재기우용호적협동과려산법중,용호평분경향성화평분구진적희소성치사난이준학가고지수심목표용호적근린。기우차,문중제출기우목표용호근린수정적협동과려산법。수선정의적겁평분화소겁평분량류용호군체,선택종목표용호평분경향성일치적용호군체중심조기근린。연후대여목표용호공동평분항수량소이상사도가능고적근린진행수정,위목표용호심조경준학적근린집합。실험표명,문중산법재일정정도상능유효제고추천질량。
In user-based collaborative filtering algorithm, the nearest neighbors of the target user are not accurate and reliable due to the tendency of userˊs rating and the sparsity of rating matrix. An effective algorithm is presented to obtain userˊs nearest neighbors. Firstly, the definitions of positive and negative ratings for user group are given respectively, and the nearest neighbors of target user are selected from the group containing same rating tendency. Then, the nearest neighbors of target user with few common rating items and high similarity are corrected. Thus, the final nearest neighbor collection is obtained. Experimental results show that the modified algorithm of neighbor selection improves the recommended quality effectively to some extent.