模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Pattern Recognition and Artificial Intelligence
2015年
9期
788-794
,共7页
陈诗文%王宪保%李梦园%姚明海
陳詩文%王憲保%李夢園%姚明海
진시문%왕헌보%리몽완%요명해
数据降维%矢量量化%等距映射%流形学习
數據降維%矢量量化%等距映射%流形學習
수거강유%시량양화%등거영사%류형학습
Data Dimensionality Reduction%Vector Quantization%Isometric Mapping%Manifold Learning
针对等距映射( ISOMAP)无监督、不能生成显式映射函数等局限性,提出矢量量化地标点的显式监督等距映射算法。该算法首先在构建的邻域图和测地线距离矩阵中引入类别信息;然后针对在迭代优化处理距离矩阵时引入地标点的问题,运用矢量量化方法代替传统随机选取方法,使选取的地标点更能反映整个流形结构;最后把径向基函数作为函数基,得到降维方法的显式映射表示。在手写数字数据集和UCI数据集上的实验表明,文中算法降维效果快速稳定,识别率较高。
針對等距映射( ISOMAP)無鑑督、不能生成顯式映射函數等跼限性,提齣矢量量化地標點的顯式鑑督等距映射算法。該算法首先在構建的鄰域圖和測地線距離矩陣中引入類彆信息;然後針對在迭代優化處理距離矩陣時引入地標點的問題,運用矢量量化方法代替傳統隨機選取方法,使選取的地標點更能反映整箇流形結構;最後把徑嚮基函數作為函數基,得到降維方法的顯式映射錶示。在手寫數字數據集和UCI數據集上的實驗錶明,文中算法降維效果快速穩定,識彆率較高。
침대등거영사( ISOMAP)무감독、불능생성현식영사함수등국한성,제출시량양화지표점적현식감독등거영사산법。해산법수선재구건적린역도화측지선거리구진중인입유별신식;연후침대재질대우화처리거리구진시인입지표점적문제,운용시량양화방법대체전통수궤선취방법,사선취적지표점경능반영정개류형결구;최후파경향기함수작위함수기,득도강유방법적현식영사표시。재수사수자수거집화UCI수거집상적실험표명,문중산법강유효과쾌속은정,식별솔교고。
Since isometric mapping ( ISOMAP ) has no supervision and explicit mapping function and other limitations, an improved algorithm, selection of vector quantization landmark points for supervised isometric mapping with explicit mapping ( SE-VQ-ISOMAP ) , is put forward. Firstly, the category information is introduced in the construction of neighborhood graph and geodesic distance matrix. Aiming at the problem that the landmark points are introduced into iterative optimization when distance matrix is processed, a method of vector quantization is employed instead of the traditional random selection. Thus, the whole manifold structure is indicated better by the selected samples. Finally, the radial function is regarded as basis, and consequently explicit mapping of dimensionality reduction method is obtained. On the handwritten digits sets and UCI datasets, the experimental results show that the proposed algorithm is fast and stable with a higher recognition rate.