中国环境科学
中國環境科學
중국배경과학
China Environmental Science
2015年
9期
2835-2842
,共8页
农村%生活污水%SD模型%费用函数%控制单元%太湖流域%常州市
農村%生活汙水%SD模型%費用函數%控製單元%太湖流域%常州市
농촌%생활오수%SD모형%비용함수%공제단원%태호류역%상주시
rural areas%rural sewage%system dynamics model%cost function%control unit%Taihu Basin%Changzhou City
基于系统动力学(SD)模拟模型和Powell优化模型,建立了农村生活污水污染物削减量与治理费用的SD-Powell模拟优化耦合模型,该模型可模拟预测污染物排放量,建立污染物削减量与治理费用函数关系.在此基础上,以污水治理费用最小为目标,以污水处理量为约束条件,对区域污染物削减量进行空间优化,得到最小治理费用下的最大污染物削减量.以常州市为例进行实证分析,模拟结果显示,2020 年常州市农村生活污水COD和NH3-N排放量将达到16583t和2551t,分别比2008年增长4.60%和4.59%.采用聚类方法将常州市51个乡镇划分为4类控制单元,得到4类地区COD、NH3-N治理费用函数.各单位治理资金削减量存在明显差异,COD削减率的排序依次为:I类控制单元413kg/万元、IV类控制单元 380kg/万元、Ⅱ类控制单元352kg/万元、Ⅲ类控制单元348kg/万元,NH3-N削减率的排序依次为:Ⅲ类控制单元65kg/万元、Ⅰ类控制单元64kg/万元、Ⅳ类控制单元58kg/万元、Ⅱ类控制单元54kg/万元,全区域削减率达到100%需要的治理费用约为16870万元.污染物削减空间优化结果显示,基于控制单元空间优化的削减效率高于平均分配的结果,治理费用在1000 -16870万元/a范围,COD、NH3-N的削减率分别提高6.4%和7.4%,4类地区的优先排序顺序依次为Ⅰ类,Ⅳ类,Ⅱ类和Ⅲ类.
基于繫統動力學(SD)模擬模型和Powell優化模型,建立瞭農村生活汙水汙染物削減量與治理費用的SD-Powell模擬優化耦閤模型,該模型可模擬預測汙染物排放量,建立汙染物削減量與治理費用函數關繫.在此基礎上,以汙水治理費用最小為目標,以汙水處理量為約束條件,對區域汙染物削減量進行空間優化,得到最小治理費用下的最大汙染物削減量.以常州市為例進行實證分析,模擬結果顯示,2020 年常州市農村生活汙水COD和NH3-N排放量將達到16583t和2551t,分彆比2008年增長4.60%和4.59%.採用聚類方法將常州市51箇鄉鎮劃分為4類控製單元,得到4類地區COD、NH3-N治理費用函數.各單位治理資金削減量存在明顯差異,COD削減率的排序依次為:I類控製單元413kg/萬元、IV類控製單元 380kg/萬元、Ⅱ類控製單元352kg/萬元、Ⅲ類控製單元348kg/萬元,NH3-N削減率的排序依次為:Ⅲ類控製單元65kg/萬元、Ⅰ類控製單元64kg/萬元、Ⅳ類控製單元58kg/萬元、Ⅱ類控製單元54kg/萬元,全區域削減率達到100%需要的治理費用約為16870萬元.汙染物削減空間優化結果顯示,基于控製單元空間優化的削減效率高于平均分配的結果,治理費用在1000 -16870萬元/a範圍,COD、NH3-N的削減率分彆提高6.4%和7.4%,4類地區的優先排序順序依次為Ⅰ類,Ⅳ類,Ⅱ類和Ⅲ類.
기우계통동역학(SD)모의모형화Powell우화모형,건립료농촌생활오수오염물삭감량여치리비용적SD-Powell모의우화우합모형,해모형가모의예측오염물배방량,건립오염물삭감량여치리비용함수관계.재차기출상,이오수치리비용최소위목표,이오수처리량위약속조건,대구역오염물삭감량진행공간우화,득도최소치리비용하적최대오염물삭감량.이상주시위례진행실증분석,모의결과현시,2020 년상주시농촌생활오수COD화NH3-N배방량장체도16583t화2551t,분별비2008년증장4.60%화4.59%.채용취류방법장상주시51개향진화분위4류공제단원,득도4류지구COD、NH3-N치리비용함수.각단위치리자금삭감량존재명현차이,COD삭감솔적배서의차위:I류공제단원413kg/만원、IV류공제단원 380kg/만원、Ⅱ류공제단원352kg/만원、Ⅲ류공제단원348kg/만원,NH3-N삭감솔적배서의차위:Ⅲ류공제단원65kg/만원、Ⅰ류공제단원64kg/만원、Ⅳ류공제단원58kg/만원、Ⅱ류공제단원54kg/만원,전구역삭감솔체도100%수요적치리비용약위16870만원.오염물삭감공간우화결과현시,기우공제단원공간우화적삭감효솔고우평균분배적결과,치리비용재1000 -16870만원/a범위,COD、NH3-N적삭감솔분별제고6.4%화7.4%,4류지구적우선배서순서의차위Ⅰ류,Ⅳ류,Ⅱ류화Ⅲ류.
Rural sewage treatment is an important task of the New Rural Construction in China, which also plays a key role in improving the rural ecological environment. In this study, using system dynamic (SD) model and Powell optimization model, a SD-Powell coupled model with simulation and optimization function was set up to simulate and predict the amount of pollutant discharge, and to establish the functional relationship of pollutant reduction and cost. Taking Changzhou City in Jiangsu Province as a case study, the calculated results indicate that COD and ammonia emissions will reach up to 16583 t and 2551 t in 2020 respectively, increased by 4.60% and 4.59% compared to 2008. The 51 towns in Changzhou City were divided into four categories of control units using clustering method. The treatment cost functions for COD and ammonia in different control units were obtained, with the treatment cost in four units varying from 348 kg to 413 kg per ten thousand Yuan RMB for COD, and 54 kg to 65 kg per ten thousand Yuan RMB for ammonia. The total cost will be 168.7 million RMB Yuan if the pollutant reduction rate in the whole area reaches 100%. The results show that the pollutant reduction rate by cost optimization was better than the cost average allocation. Compared to average allocation results, the method used in this study could increase reduction effectiveness of the two pollutants COD and ammonia by 6.4% and 7.4%, respectively. The optimal treatment cost was between 10and 168.7 million RMB per year under different reduction rates and the treatment cost for priority unit was in the order of Ⅰ>Ⅳ>Ⅱ>Ⅲ.