传感技术学报
傳感技術學報
전감기술학보
Chinese Journal of Sensors and Actuators
2015年
9期
1402-1407
,共6页
无线传感网%压缩感知%自适应采样%最小生成树%K均值分簇
無線傳感網%壓縮感知%自適應採樣%最小生成樹%K均值分簇
무선전감망%압축감지%자괄응채양%최소생성수%K균치분족
wireless sensor networks%compressive sensing%adaptive sampling%minimum spanning tree%K-Means clustering
考虑无线传感网中数据采集特点和能量约束性,将分簇路由策略融合到压缩感知采样中,提出了一种融合K均值分簇MST路由的压缩采样算法.算法采用稀疏投影矩阵以减小投影矩阵与稀疏基之间的相关度,利用K均值分簇MST(Mini?mum Spanning Tree)机制构造数据融合树,在保证数据重构质量的基础上减少网络数据传输量.仿真结果表明,算法可以提高网络能量使用效率,同时可以适应各种规模的无线传感网.
攷慮無線傳感網中數據採集特點和能量約束性,將分簇路由策略融閤到壓縮感知採樣中,提齣瞭一種融閤K均值分簇MST路由的壓縮採樣算法.算法採用稀疏投影矩陣以減小投影矩陣與稀疏基之間的相關度,利用K均值分簇MST(Mini?mum Spanning Tree)機製構造數據融閤樹,在保證數據重構質量的基礎上減少網絡數據傳輸量.倣真結果錶明,算法可以提高網絡能量使用效率,同時可以適應各種規模的無線傳感網.
고필무선전감망중수거채집특점화능량약속성,장분족로유책략융합도압축감지채양중,제출료일충융합K균치분족MST로유적압축채양산법.산법채용희소투영구진이감소투영구진여희소기지간적상관도,이용K균치분족MST(Mini?mum Spanning Tree)궤제구조수거융합수,재보증수거중구질량적기출상감소망락수거전수량.방진결과표명,산법가이제고망락능량사용효솔,동시가이괄응각충규모적무선전감망.
Considering the special characteristics of data collection and energy constraints of wireless sensor net-works,the paper combines clustered routing strategy with compressed sensing data collection method and then pro-poses a compressed sensing based compressive sampling algorithm with K-Means clustering MST(Minimum Span-ning Tree)routing. The proposed algorithm uses the sparse projection matrix in order to reduce the correlation de-gree value between the projection matrix and sparse matrix so as to reduce the amount of data transmission in the ba-sis to ensure the quality of the data reconstruction by using K-Means clustering MST data fusion tree. The simula-tion results show that this algorithm can improve the network energy usage efficiency,and also be suitable to all kinds of scale wireless sensor networks.