传感技术学报
傳感技術學報
전감기술학보
Chinese Journal of Sensors and Actuators
2015年
9期
1418-1424
,共7页
尚俊娜%刘春菊%岳克强%李林
尚俊娜%劉春菊%嶽剋彊%李林
상준나%류춘국%악극강%리림
无线传感网络节点定位%多智能体%蝙蝠算法%定位精度
無線傳感網絡節點定位%多智能體%蝙蝠算法%定位精度
무선전감망락절점정위%다지능체%편복산법%정위정도
WSNs node localization%multi-agent%bat algorithm%accuracy
针对无线传感器网络(WSNs)节点的定位误差较大的问题,提出了一种新的具有局部搜索能力强的多智能体蝙蝠算法.改进算法中对寻优蝙蝠个体融入多智能体技术,通过邻域竞争合作算子以及自学习过程提高了算法全局搜索能力,避免算法陷入局部最优,加快算法的收敛速度.通过对标准测试函数的仿真,改进算法相比于其他算法,寻优精度和进化效率得到了较大的提高.随后采用多智能体蝙蝠算法求解无线传感节点定位问题,仿真结果表明改进算法减少了测距误差对定位精度的影响,提高了未知节点定位的精度,为无线传感网络节点定位的实际应用提供理论参考.
針對無線傳感器網絡(WSNs)節點的定位誤差較大的問題,提齣瞭一種新的具有跼部搜索能力彊的多智能體蝙蝠算法.改進算法中對尋優蝙蝠箇體融入多智能體技術,通過鄰域競爭閤作算子以及自學習過程提高瞭算法全跼搜索能力,避免算法陷入跼部最優,加快算法的收斂速度.通過對標準測試函數的倣真,改進算法相比于其他算法,尋優精度和進化效率得到瞭較大的提高.隨後採用多智能體蝙蝠算法求解無線傳感節點定位問題,倣真結果錶明改進算法減少瞭測距誤差對定位精度的影響,提高瞭未知節點定位的精度,為無線傳感網絡節點定位的實際應用提供理論參攷.
침대무선전감기망락(WSNs)절점적정위오차교대적문제,제출료일충신적구유국부수색능력강적다지능체편복산법.개진산법중대심우편복개체융입다지능체기술,통과린역경쟁합작산자이급자학습과정제고료산법전국수색능력,피면산법함입국부최우,가쾌산법적수렴속도.통과대표준측시함수적방진,개진산법상비우기타산법,심우정도화진화효솔득도료교대적제고.수후채용다지능체편복산법구해무선전감절점정위문제,방진결과표명개진산법감소료측거오차대정위정도적영향,제고료미지절점정위적정도,위무선전감망락절점정위적실제응용제공이론삼고.
In order to solve the node location error in wireless sensor networks(WSNs),this paper proposes a new multi-agent bat algorithm,which possesses favorable local searching ability. In the proposed algorithm,the bat indi-vidual is a agent,which could compete and cooperate with its agent neighbor areas to improve the efficiency of local searching. In this way the multi-agent bat algorithm(MA-BA)could avoid the algorithm into a local optimum and in-crease the convergence speed. Simulation results for standard test functions indicate that the proposed algorithm re-markably improves the global optimizing ability and evolutionary efficiency compared to other algorithms. Through implementing the MA-BA to node location prediction,the precision of the unknown node location could be im-proved due to decreasing the ranging error and has a certain significance to practical application of wireless sensor network node localization.