制冷
製冷
제랭
Refrigeration
2015年
3期
25-31
,共7页
电动汽车%热泵%流程分析%制冷剂侧结构%扁管
電動汽車%熱泵%流程分析%製冷劑側結構%扁管
전동기차%열빙%류정분석%제랭제측결구%편관
Electric vehicle%Heat pump system%Analysis of flow path%Refrigerant-side structure%Flat tube
针对电动车热泵空调系统车外换热器不能使用传统平行流换热器的问题, 采用分布参数法建立了稳态数学模型, 利用该模型研究了在结霜工况下制冷剂侧结构, 包括流程数、 各流程扁管布置方式、 扁管宽度和微通道孔高对换热及压降的影响, 仿真结果表明在保证换热器出口达到过热的情况下, 应当尽可能的减小流程数以降低制冷剂侧压降, 同时在空气侧压降的限制下, 可以适当的增加扁管宽度来减小制冷剂侧压降, 孔高的增加会使得换热量和制冷剂侧压降同时减小, 但是换热量衰减很小, 所以适当增加孔高也是一个减小制冷剂侧压降的方法.
針對電動車熱泵空調繫統車外換熱器不能使用傳統平行流換熱器的問題, 採用分佈參數法建立瞭穩態數學模型, 利用該模型研究瞭在結霜工況下製冷劑側結構, 包括流程數、 各流程扁管佈置方式、 扁管寬度和微通道孔高對換熱及壓降的影響, 倣真結果錶明在保證換熱器齣口達到過熱的情況下, 應噹儘可能的減小流程數以降低製冷劑側壓降, 同時在空氣側壓降的限製下, 可以適噹的增加扁管寬度來減小製冷劑側壓降, 孔高的增加會使得換熱量和製冷劑側壓降同時減小, 但是換熱量衰減很小, 所以適噹增加孔高也是一箇減小製冷劑側壓降的方法.
침대전동차열빙공조계통차외환열기불능사용전통평행류환열기적문제, 채용분포삼수법건립료은태수학모형, 이용해모형연구료재결상공황하제랭제측결구, 포괄류정수、 각류정편관포치방식、 편관관도화미통도공고대환열급압강적영향, 방진결과표명재보증환열기출구체도과열적정황하, 응당진가능적감소류정수이강저제랭제측압강, 동시재공기측압강적한제하, 가이괄당적증가편관관도래감소제랭제측압강, 공고적증가회사득환열량화제랭제측압강동시감소, 단시환열량쇠감흔소, 소이괄당증가공고야시일개감소제랭제측압강적방법.
To solve the problem that the conventional Parallel-Flow heat exchanger can not be used as the electric vehicle heat pump system′s external heat exchanger, the theoretical model was established based on the method of distribution parameters. Based on this model, the effects of flow path numbers, flat tubes distribution of every flow path, flat tube width and height of the inner hole on the heat transfer and pressure drop of the Parallel-Flow heat ex changer in the frost condition were investigated. The result shows that, the flow path number should be as few as all Owed under the condition that the outlet of heat exchanger′s refrigerant was overheat, so the refrigerant′s pres-sure drop will be small, moreover, the flat tube width can be increased to decrease the pressure drop of refrigerant under the restriction of air-side pressure drop. Increasing the inner hole height was also a good choice, beacause with the increasing of inner hole height, the refrigerant-side pressure drop and heat exchanger both decrease, but heat exchan Ger just drop a bit.