中华放射学杂志
中華放射學雜誌
중화방사학잡지
Chinese Journal of Radiology
2015年
9期
679-684
,共6页
潘存雪%古丽娜·阿扎提%邢艳%刘文亚%肖虎
潘存雪%古麗娜·阿扎提%邢豔%劉文亞%肖虎
반존설%고려나·아찰제%형염%류문아%초호
冠状动脉%心肌%体层摄影术,X线计算机%能谱CT成像
冠狀動脈%心肌%體層攝影術,X線計算機%能譜CT成像
관상동맥%심기%체층섭영술,X선계산궤%능보CT성상
Coronary artery%Myocardium%Tomography,X-ray computed%Spectral CT imaging
目的:探讨冠状动脉CT单能量成像改善心肌射线硬化伪影(BH)的价值。方法前瞻性收集行单源双能量冠状动脉CT成像检查,且结果显示冠状动脉狭窄程度<50%的30例患者。患者均采用能谱扫描模式、单源瞬时(0.5 ms)管电压(140、80 kVp)切换技术行心脏能谱CT检查。将扫描获得的原始图像采用40%自适应统计迭代重组技术重组为左心室短轴面单能量图像(60、70、80、90、100、110、120、130、140 keV),并常规重组左心室短轴面混合能量图像。在上述图像上分别测量13个心脏节段(分别为基底部前壁、侧壁、下壁、间隔壁,中部前壁、侧壁、下壁、间隔壁,心尖部前壁、侧壁、下壁、间隔壁和心尖)的心肌CT值,并计算左室心肌平均CT值。对不同图像上的BH进行主观评分,并计算BH1(CT中部下壁-CT基底部下壁)和BH2(CT中部间隔壁-CT中部下壁)值。在混合能量图像上,不同节段心肌CT值与左室心肌平均CT值间的比较采用单样本t检验;各单能量水平上左心室壁各节段心肌CT值的比较采用Kruskal-Wallis检验;不同单能量水平与混合能量图像上对BH客观测量值及主观评分的比较采用Wilcoxon秩和检验。结果在混合能量图像上,左室心肌平均CT值为(73±25)HU,基底部下壁、基底部间隔壁、中部间隔壁、心尖部前壁和心尖的CT值分别为(58±23)、(85±21)、(89±24)、(64±23)、(61±24)HU,和左室心肌平均CT值的差异均有统计学意义(t值分别为-3.76、2.89、3.50、-2.30、-2.86,P均<0.05),其余心肌各节段的CT值和左室心肌平均CT值差异均无统计学意义(P均>0.05)。在60~80 keV单能量图像上,13个节段心肌的CT值差异有统计学意义(P均<0.05);90~140 keV图像上各节段心肌的CT值差异均无统计学意义(P均>0.05),提示心肌显示均匀性改善。混合能量图像的BH1、BH2中位数(上、下四分位数)分别为11(6,28)HU和19(1,29)HU,90~140 keV图像的BH1、70~140 keV图像的BH2较混合能量图像有所改善,差异有统计学意义(P均<0.05)。BH1、BH2值在60~100 keV水平随单能量水平升高呈下降趋势,在110、120 keV随单能量水平升高有小幅上升,随后于130 keV达到最低水平,分别为5.20、0.34 HU,而后于140 keV再次出现小幅上升。混合能量图像的BH1、BH2评分中位数(上、下四分位数)均为1(1,2)分,70~140 keV图像的BH1评分、90~140 keV图像的BH2评分较混合能量图像有所改善,差异有统计学意义(P均<0.05)。结论与混合能量图像相比,冠状动脉能谱CT单能量成像能提高心肌CT值的均匀性,改善心肌射线硬化伪影现象,其中130 keV为改善心肌射线硬化伪影的最佳单能量水平。
目的:探討冠狀動脈CT單能量成像改善心肌射線硬化偽影(BH)的價值。方法前瞻性收集行單源雙能量冠狀動脈CT成像檢查,且結果顯示冠狀動脈狹窄程度<50%的30例患者。患者均採用能譜掃描模式、單源瞬時(0.5 ms)管電壓(140、80 kVp)切換技術行心髒能譜CT檢查。將掃描穫得的原始圖像採用40%自適應統計迭代重組技術重組為左心室短軸麵單能量圖像(60、70、80、90、100、110、120、130、140 keV),併常規重組左心室短軸麵混閤能量圖像。在上述圖像上分彆測量13箇心髒節段(分彆為基底部前壁、側壁、下壁、間隔壁,中部前壁、側壁、下壁、間隔壁,心尖部前壁、側壁、下壁、間隔壁和心尖)的心肌CT值,併計算左室心肌平均CT值。對不同圖像上的BH進行主觀評分,併計算BH1(CT中部下壁-CT基底部下壁)和BH2(CT中部間隔壁-CT中部下壁)值。在混閤能量圖像上,不同節段心肌CT值與左室心肌平均CT值間的比較採用單樣本t檢驗;各單能量水平上左心室壁各節段心肌CT值的比較採用Kruskal-Wallis檢驗;不同單能量水平與混閤能量圖像上對BH客觀測量值及主觀評分的比較採用Wilcoxon秩和檢驗。結果在混閤能量圖像上,左室心肌平均CT值為(73±25)HU,基底部下壁、基底部間隔壁、中部間隔壁、心尖部前壁和心尖的CT值分彆為(58±23)、(85±21)、(89±24)、(64±23)、(61±24)HU,和左室心肌平均CT值的差異均有統計學意義(t值分彆為-3.76、2.89、3.50、-2.30、-2.86,P均<0.05),其餘心肌各節段的CT值和左室心肌平均CT值差異均無統計學意義(P均>0.05)。在60~80 keV單能量圖像上,13箇節段心肌的CT值差異有統計學意義(P均<0.05);90~140 keV圖像上各節段心肌的CT值差異均無統計學意義(P均>0.05),提示心肌顯示均勻性改善。混閤能量圖像的BH1、BH2中位數(上、下四分位數)分彆為11(6,28)HU和19(1,29)HU,90~140 keV圖像的BH1、70~140 keV圖像的BH2較混閤能量圖像有所改善,差異有統計學意義(P均<0.05)。BH1、BH2值在60~100 keV水平隨單能量水平升高呈下降趨勢,在110、120 keV隨單能量水平升高有小幅上升,隨後于130 keV達到最低水平,分彆為5.20、0.34 HU,而後于140 keV再次齣現小幅上升。混閤能量圖像的BH1、BH2評分中位數(上、下四分位數)均為1(1,2)分,70~140 keV圖像的BH1評分、90~140 keV圖像的BH2評分較混閤能量圖像有所改善,差異有統計學意義(P均<0.05)。結論與混閤能量圖像相比,冠狀動脈能譜CT單能量成像能提高心肌CT值的均勻性,改善心肌射線硬化偽影現象,其中130 keV為改善心肌射線硬化偽影的最佳單能量水平。
목적:탐토관상동맥CT단능량성상개선심기사선경화위영(BH)적개치。방법전첨성수집행단원쌍능량관상동맥CT성상검사,차결과현시관상동맥협착정도<50%적30례환자。환자균채용능보소묘모식、단원순시(0.5 ms)관전압(140、80 kVp)절환기술행심장능보CT검사。장소묘획득적원시도상채용40%자괄응통계질대중조기술중조위좌심실단축면단능량도상(60、70、80、90、100、110、120、130、140 keV),병상규중조좌심실단축면혼합능량도상。재상술도상상분별측량13개심장절단(분별위기저부전벽、측벽、하벽、간격벽,중부전벽、측벽、하벽、간격벽,심첨부전벽、측벽、하벽、간격벽화심첨)적심기CT치,병계산좌실심기평균CT치。대불동도상상적BH진행주관평분,병계산BH1(CT중부하벽-CT기저부하벽)화BH2(CT중부간격벽-CT중부하벽)치。재혼합능량도상상,불동절단심기CT치여좌실심기평균CT치간적비교채용단양본t검험;각단능량수평상좌심실벽각절단심기CT치적비교채용Kruskal-Wallis검험;불동단능량수평여혼합능량도상상대BH객관측량치급주관평분적비교채용Wilcoxon질화검험。결과재혼합능량도상상,좌실심기평균CT치위(73±25)HU,기저부하벽、기저부간격벽、중부간격벽、심첨부전벽화심첨적CT치분별위(58±23)、(85±21)、(89±24)、(64±23)、(61±24)HU,화좌실심기평균CT치적차이균유통계학의의(t치분별위-3.76、2.89、3.50、-2.30、-2.86,P균<0.05),기여심기각절단적CT치화좌실심기평균CT치차이균무통계학의의(P균>0.05)。재60~80 keV단능량도상상,13개절단심기적CT치차이유통계학의의(P균<0.05);90~140 keV도상상각절단심기적CT치차이균무통계학의의(P균>0.05),제시심기현시균균성개선。혼합능량도상적BH1、BH2중위수(상、하사분위수)분별위11(6,28)HU화19(1,29)HU,90~140 keV도상적BH1、70~140 keV도상적BH2교혼합능량도상유소개선,차이유통계학의의(P균<0.05)。BH1、BH2치재60~100 keV수평수단능량수평승고정하강추세,재110、120 keV수단능량수평승고유소폭상승,수후우130 keV체도최저수평,분별위5.20、0.34 HU,이후우140 keV재차출현소폭상승。혼합능량도상적BH1、BH2평분중위수(상、하사분위수)균위1(1,2)분,70~140 keV도상적BH1평분、90~140 keV도상적BH2평분교혼합능량도상유소개선,차이유통계학의의(P균<0.05)。결론여혼합능량도상상비,관상동맥능보CT단능량성상능제고심기CT치적균균성,개선심기사선경화위영현상,기중130 keV위개선심기사선경화위영적최가단능량수평。
Objective To evaluate beam-hardening (BH) artifact reduction of myocardium in coronary computed tomography angiography(CCTA)with single-source dual-energy CT. Methods Thirty patients received CCTA on single-source dual-energy CT with findings of coronary artery stenosis<50%were enrolled in this study prospectively. Scanning mode was gemstone spectral imaging (GSI), single-source instantaneous(0.5 ms)kVp(140 kVp and 80 kVp)switch. The original images acquired by scanning were <br> reconstructed into monochromatic energy (60,70,80,90,100,110,120,130,140 keV) left vertical short-axis images via 40% ASIR and the polychromatic left vertical short-axis images were conventionally reconstructed. CT values were measured across multiple segments (basal anterior, basal lateral, basal inferior , basal septal, mid anterior, mid lateral, mid inferior , mid septal, apical anterior, apical lateral, apical inferior , apical septal and apex)of left ventricle wall at varying monochromatic energy levels and polychromatic images, and then the left ventricular myocardial average CT value and BH objective value were calculated retrospectively:BH1=CT value of mid inferior wall-CT value of basal inferior wall ,BH2=CT value of mid septal wall-CT value of mid inferior wall. BH subjective rating were evaluated by two radiologists independently. Single sample t test was used to compare the difference of myocardial CT values among 13 segments with the left ventricular myocardial average CT value on polychromatic images ;Kruskal-Wallis test was used to compare the difference of CT values among thirteen different segments of myocardium on fixed monochromatic energy images; Wilcoxon rank test was used to compare the difference of BH objective value and subjective rating between monochromatic images with polychromatic images. Results On polychromatic images, the mean myocardial CT value was(73 ± 25)HU, the CT value of basic inferior[(58±23)HU], basic septal[(85±21)HU], mid septal[(89±24)HU], apical anterior[(64±23)HU]and apex [(61 ± 24)HU ] were different from the mean myocardial CT value(t value were -3.76,2.89,3.50,-2.30, -2.86,P all<0.05),the differences of CT value between other myocardial segments and the mean myocardial CT value had no statistical significance(P all>0.05). The differences of CT value of different myocardial segments had statistical significance at 60 to 80 keV images(P all<0.05), the differences of CT value of different myocardial segments had no statistical significance at 90 to 140 keV images(P all>0.05), suggesting that the non-uniformity of CT value among different segments was improved. On polychromatic images,BH1 M(P25,P75)was 11(6,28),BH2 M(P25,P75)was 19(1,29) HU. BH1 was improved on 90 to 140 keV images while BH2 was improved on 70 to 140 keV images, the difference had statistical significance compared with the polychromatic images(P all<0.05). BH1,BH2 decreased with the increasing of monochromatic energy level on 60 to 100 keV images, then increased a little on 110,120 keV images, and hit bottom on 130 keV images with the value of 5.20,0.34 HU ,finally exist a slight increase on 140 keV images again. On polychromatic images,BH1,BH2 subjective rating M(P25,P75)both were 1(1,2), BH1 subjective rating was improved on 70 to 140 keV images while BH2 subjective rating was improved on 90 to 140 keV , the difference had statistical significance compared with the polychromatic images(P all<0.05). Conclusion Compared with the polychromatic images,monochromatic energy images of CCTA with dual-energy CT resulted in significant BH artifact reduction and improvements in the uniformity in the myocardium, and 130 keV is the optimal Monochromatic energy.