中山大学学报(自然科学版)
中山大學學報(自然科學版)
중산대학학보(자연과학판)
Acta Scientiarum Naturalium Universitatis Sunyatseni
2015年
5期
122-129
,共8页
赖成光%王兆礼%陈晓宏%黄锐贞%廖威林%吴旭树
賴成光%王兆禮%陳曉宏%黃銳貞%廖威林%吳旭樹
뢰성광%왕조례%진효굉%황예정%료위림%오욱수
洪灾%风险区划%蚁群优化算法%规则挖掘%北江流域
洪災%風險區劃%蟻群優化算法%規則挖掘%北江流域
홍재%풍험구화%의군우화산법%규칙알굴%북강류역
Flood disaster%risk zoning%ant colony optimization%rule mining%the Beijiang River basin
应用蚁群优化算法(Ant Colony Optimization,ACO)进行规则挖掘是一个新的研究热点。为解决指标变量与风险级别间非线性关系,提出一种基于蚁群规则挖掘算法(Ant-Miner)的洪灾风险区划模型。在 GIS 技术支持下,将该模型应用于北江流域洪灾风险区划实例中,结果表明:① Ant-Miner 模型可挖掘15条适合研究区的洪灾风险分类规则,这些规则以简单的条件语句形式表现,便于生成风险区划图;② Ant-Miner 模型测试精度(95.1%)高于相同条件下 BP 神经网络模型的精度(92.9%),表明其分类性能更好,对洪灾风险区划具有更好的适用性;③研究区高风险区主要集中于降雨量较大、地势平缓低洼、人口财产密集的地区,与历史洪灾风险情况较吻合,表明所构建的模型科学合理,可为流域洪灾风险评价提供了新思路。
應用蟻群優化算法(Ant Colony Optimization,ACO)進行規則挖掘是一箇新的研究熱點。為解決指標變量與風險級彆間非線性關繫,提齣一種基于蟻群規則挖掘算法(Ant-Miner)的洪災風險區劃模型。在 GIS 技術支持下,將該模型應用于北江流域洪災風險區劃實例中,結果錶明:① Ant-Miner 模型可挖掘15條適閤研究區的洪災風險分類規則,這些規則以簡單的條件語句形式錶現,便于生成風險區劃圖;② Ant-Miner 模型測試精度(95.1%)高于相同條件下 BP 神經網絡模型的精度(92.9%),錶明其分類性能更好,對洪災風險區劃具有更好的適用性;③研究區高風險區主要集中于降雨量較大、地勢平緩低窪、人口財產密集的地區,與歷史洪災風險情況較吻閤,錶明所構建的模型科學閤理,可為流域洪災風險評價提供瞭新思路。
응용의군우화산법(Ant Colony Optimization,ACO)진행규칙알굴시일개신적연구열점。위해결지표변량여풍험급별간비선성관계,제출일충기우의군규칙알굴산법(Ant-Miner)적홍재풍험구화모형。재 GIS 기술지지하,장해모형응용우북강류역홍재풍험구화실례중,결과표명:① Ant-Miner 모형가알굴15조괄합연구구적홍재풍험분류규칙,저사규칙이간단적조건어구형식표현,편우생성풍험구화도;② Ant-Miner 모형측시정도(95.1%)고우상동조건하 BP 신경망락모형적정도(92.9%),표명기분류성능경호,대홍재풍험구화구유경호적괄용성;③연구구고풍험구주요집중우강우량교대、지세평완저와、인구재산밀집적지구,여역사홍재풍험정황교문합,표명소구건적모형과학합리,가위류역홍재풍험평개제공료신사로。
Using Ant Colony Optimization (ACO)to mine rules is a research hotspot nowadays.This pa-per proposed a new zoning model of flood risk based on ant colony rule mining algorithm (Ant-Miner)to solve the non-linear relationship between index and flood risk grade.The model was used in the Beijiang River basin with the support of GIS technique.The assessment results show that ① 15 simple rules ex-pressed in the form of conditional statement were mined by the Ant-Miner model.The rules are appropri-ate for the study areas and can be easily used for generating a zoning map of flood disaster risk.② The test accuracy is 95.1% in the Ant-Miner model ,92.9% in BP neural network model,indicating that the discriminative capability and flood risk zoning applicability of the former is stronger than the latter.③The high risk areas identified by Ant-Miner are mainly located in the regions with large precipitation,flat and low-lying terrain and dense population and property.These areas match well with the submerged are-as of historical flood disasters,indicating that the Ant-Miner model is reasonable and practicable and can provide a new method for flood risk assessment.