化工学报
化工學報
화공학보
CIESC Jorunal
2015年
10期
4163-4169
,共7页
富丽娟%刘颖颖%鲁厚芳%唐思扬%梁斌
富麗娟%劉穎穎%魯厚芳%唐思颺%樑斌
부려연%류영영%로후방%당사양%량빈
离子化合物%DBU%醇%CO2%活性%稳定性
離子化閤物%DBU%醇%CO2%活性%穩定性
리자화합물%DBU%순%CO2%활성%은정성
ionic compounds%DBU%alcohol%CO2%reactivity%stability
利用红外光谱、核磁共振和热重分析表征了1,8-二氮杂环[5,4,0]十一烯-7(DBU)和CO2分别与C3-醇,即正丙醇、异丙醇、1,2-丙二醇、1,3-丙二醇和甘油,反应生成的离子化合物的组成和结构,研究了伯羟基和仲羟基与DBU 和 CO2反应的活性,以及空间位阻对羟基反应活性和生成的离子化合物的热稳定性的影响。结果表明, DBU+C3-醇+CO2体系中伯羟基比仲羟基具有更高的反应活性,反应产物更稳定。由于空间位阻和电子效应等影响,二元醇中第2个羟基的反应活性远低于第1个羟基。在DBU+甘油+CO2体系中由于空间位阻和电子效应的影响,当DBU和甘油的摩尔比为3:1时,其中1位羟基的转化率可达100%,3位羟基的转化率约为34%,而2位的仲羟基反应很少。
利用紅外光譜、覈磁共振和熱重分析錶徵瞭1,8-二氮雜環[5,4,0]十一烯-7(DBU)和CO2分彆與C3-醇,即正丙醇、異丙醇、1,2-丙二醇、1,3-丙二醇和甘油,反應生成的離子化閤物的組成和結構,研究瞭伯羥基和仲羥基與DBU 和 CO2反應的活性,以及空間位阻對羥基反應活性和生成的離子化閤物的熱穩定性的影響。結果錶明, DBU+C3-醇+CO2體繫中伯羥基比仲羥基具有更高的反應活性,反應產物更穩定。由于空間位阻和電子效應等影響,二元醇中第2箇羥基的反應活性遠低于第1箇羥基。在DBU+甘油+CO2體繫中由于空間位阻和電子效應的影響,噹DBU和甘油的摩爾比為3:1時,其中1位羥基的轉化率可達100%,3位羥基的轉化率約為34%,而2位的仲羥基反應很少。
이용홍외광보、핵자공진화열중분석표정료1,8-이담잡배[5,4,0]십일희-7(DBU)화CO2분별여C3-순,즉정병순、이병순、1,2-병이순、1,3-병이순화감유,반응생성적리자화합물적조성화결구,연구료백간기화중간기여DBU 화 CO2반응적활성,이급공간위조대간기반응활성화생성적리자화합물적열은정성적영향。결과표명, DBU+C3-순+CO2체계중백간기비중간기구유경고적반응활성,반응산물경은정。유우공간위조화전자효응등영향,이원순중제2개간기적반응활성원저우제1개간기。재DBU+감유+CO2체계중유우공간위조화전자효응적영향,당DBU화감유적마이비위3:1시,기중1위간기적전화솔가체100%,3위간기적전화솔약위34%,이2위적중간기반응흔소。
The DBU/C3-alcohol/CO2ionic compounds were synthesized by reacting the C3-alcohols, namely 1-propanol, 2-propanol, 1,2-propanediol, 1,3-propanediol and glycerol with CO2 and 1,8-diazabicycloundec-7-ene (DBU), respectively. The composition and structure of them were characterized by FT-IR, NMR and TG. The reactivity of the hydroxyls at different position in C3-alcohol and the steric effect in polyols were studied. The results showed that the reactivity of the primary hydroxyl of 1-propanol was higher than the secondary hydroxyl of 2-propanol in the reaction of DBU+C3-alcohol+CO2. For the diols, the steric hindrance and the electronic effect significantly lowered the activity of the second hydroxyl, and such interaction in 1,2-diols was stronger than that of 1,3-diols. For the DBU+glycerol+CO2 system,the main ionic compound was formed by reacting with only one of the primary hydroxyl in glycerol. The second most abundant product was formed by reacting both of the primary hydroxyls in glycerol. However, the complete conversion of all three hydroxyls seemed not possible due to the high steric hindrance effect.