化工学报
化工學報
화공학보
CIESC Jorunal
2015年
10期
4101-4106
,共6页
主元分析%数值分析%过程系统%互信息%故障检测%统计过程监测
主元分析%數值分析%過程繫統%互信息%故障檢測%統計過程鑑測
주원분석%수치분석%과정계통%호신식%고장검측%통계과정감측
principal component analysis%numerical analysis%process systems%mutual information%fault detection%statistical process monitoring
主元分析(PCA)是一种经典的特征提取方法,已被广泛用于多变量统计过程监测,其算法的本质在于提取过程数据各变量之间的相关性。然而,传统PCA算法中定义的相关性矩阵局限于计算变量间的线性关系,无法衡量两个变量间相互依赖的强弱程度。为此,提出一种新的基于互信息的 PCA 方法(MIPCA)并将之应用于过程监测。与传统PCA所不同的是,MIPCA通过计算两两变量间的互信息来定义相关性,将原始相关性矩阵取而代之为互信息矩阵,并利用该互信息矩阵的特征向量实现对过程数据的特征提取。在此基础上,可以建立相应的统计监测模型。最后,通过实例验证MIPCA用于过程监测的可行性和有效性。
主元分析(PCA)是一種經典的特徵提取方法,已被廣汎用于多變量統計過程鑑測,其算法的本質在于提取過程數據各變量之間的相關性。然而,傳統PCA算法中定義的相關性矩陣跼限于計算變量間的線性關繫,無法衡量兩箇變量間相互依賴的彊弱程度。為此,提齣一種新的基于互信息的 PCA 方法(MIPCA)併將之應用于過程鑑測。與傳統PCA所不同的是,MIPCA通過計算兩兩變量間的互信息來定義相關性,將原始相關性矩陣取而代之為互信息矩陣,併利用該互信息矩陣的特徵嚮量實現對過程數據的特徵提取。在此基礎上,可以建立相應的統計鑑測模型。最後,通過實例驗證MIPCA用于過程鑑測的可行性和有效性。
주원분석(PCA)시일충경전적특정제취방법,이피엄범용우다변량통계과정감측,기산법적본질재우제취과정수거각변량지간적상관성。연이,전통PCA산법중정의적상관성구진국한우계산변량간적선성관계,무법형량량개변량간상호의뢰적강약정도。위차,제출일충신적기우호신식적 PCA 방법(MIPCA)병장지응용우과정감측。여전통PCA소불동적시,MIPCA통과계산량량변량간적호신식래정의상관성,장원시상관성구진취이대지위호신식구진,병이용해호신식구진적특정향량실현대과정수거적특정제취。재차기출상,가이건립상응적통계감측모형。최후,통과실례험증MIPCA용우과정감측적가행성화유효성。
Principal component analysis (P monitoring CA) is a classical algorithm for feature extraction and has been widely used in multivariate statistical process. The essence of the PCA algorithm is to extract the correlation between process variables. However, the correlation matrix defined in the traditional PCA algorithm is limited to consider the linear relationship between variables, which cannot be employed to analyze the mutual dependence between two measured variables. With recognition of this lack, a novel mutual information based PCA (MIPCA) method is proposed for process monitoring. Distinct from the traditional PCA, MIPCA defines the relationship between variables by calculating the mutual information, and the original correlation matrix is replaced by the resulting mutual information matrix. The eigenvectors of the mutual information matrix can thus be utilized as the directions of feature extraction. On the basis of MIPCA, a statistical process monitoring model can then be constructed. Finally, the feasibility and effectiveness of the MIPCA-based monitoring method are validated by a well-known chemical process.