燃料化学学报
燃料化學學報
연료화학학보
Journal of Fuel Chemistry and Technology
2015年
9期
1083-1091
,共9页
莫文龙%马凤云%刘月娥%刘景梅%钟梅%艾沙·努拉洪
莫文龍%馬鳳雲%劉月娥%劉景梅%鐘梅%艾沙·努拉洪
막문룡%마봉운%류월아%류경매%종매%애사·노랍홍
CH4/CO2 重整%Ni-Al2 O3 催化剂%制备方法%NiAl2 O4 尖晶石
CH4/CO2 重整%Ni-Al2 O3 催化劑%製備方法%NiAl2 O4 尖晶石
CH4/CO2 중정%Ni-Al2 O3 최화제%제비방법%NiAl2 O4 첨정석
CH4/CO2 reforming%Ni-Al2 O3 catalyst%preparation method%NiAl2 O4 spinel
为提高镍基催化剂的干法重整活性,采用溶液燃烧法、等体积浸渍法、胶体磨循环浸渍法和水热-沉积法制备了SCM、IMP、T310和HTP四种催化剂,在800℃考察了其在CO2-CH4重整反应中的催化性能,并结合ICP-AES、N2吸附-脱附、XRD、H2-TPR和TEM等表征手段对催化剂进行分析。结果表明,水热-沉积法和胶体磨循环浸渍法制备的催化剂比表面积较大,分别为190.83和182.21 m2/g,可为反应提供较多的接触面积,进而提高催化剂的初始活性( HTP试样CH4和CO2初始转化率相对较高,分别达85.15%和90.84%);而溶液燃烧法和等体积浸渍法制备的催化剂具有较多的NiAl2 O4尖晶石,其还原峰面积占总还原峰面积90%以上,还原后可获得更多晶粒粒径更小的稳定活性组分Ni ( SCM和IMP试样稳定性更好,反应50 h后活性超过HTP和T310试样,100 h后CH4转化率方降至50%以下)。因此,决定催化剂稳定活性的更重要的因素应该是活性组分Ni晶粒粒径的大小及其抗烧结能力的强弱。
為提高鎳基催化劑的榦法重整活性,採用溶液燃燒法、等體積浸漬法、膠體磨循環浸漬法和水熱-沉積法製備瞭SCM、IMP、T310和HTP四種催化劑,在800℃攷察瞭其在CO2-CH4重整反應中的催化性能,併結閤ICP-AES、N2吸附-脫附、XRD、H2-TPR和TEM等錶徵手段對催化劑進行分析。結果錶明,水熱-沉積法和膠體磨循環浸漬法製備的催化劑比錶麵積較大,分彆為190.83和182.21 m2/g,可為反應提供較多的接觸麵積,進而提高催化劑的初始活性( HTP試樣CH4和CO2初始轉化率相對較高,分彆達85.15%和90.84%);而溶液燃燒法和等體積浸漬法製備的催化劑具有較多的NiAl2 O4尖晶石,其還原峰麵積佔總還原峰麵積90%以上,還原後可穫得更多晶粒粒徑更小的穩定活性組分Ni ( SCM和IMP試樣穩定性更好,反應50 h後活性超過HTP和T310試樣,100 h後CH4轉化率方降至50%以下)。因此,決定催化劑穩定活性的更重要的因素應該是活性組分Ni晶粒粒徑的大小及其抗燒結能力的彊弱。
위제고얼기최화제적간법중정활성,채용용액연소법、등체적침지법、효체마순배침지법화수열-침적법제비료SCM、IMP、T310화HTP사충최화제,재800℃고찰료기재CO2-CH4중정반응중적최화성능,병결합ICP-AES、N2흡부-탈부、XRD、H2-TPR화TEM등표정수단대최화제진행분석。결과표명,수열-침적법화효체마순배침지법제비적최화제비표면적교대,분별위190.83화182.21 m2/g,가위반응제공교다적접촉면적,진이제고최화제적초시활성( HTP시양CH4화CO2초시전화솔상대교고,분별체85.15%화90.84%);이용액연소법화등체적침지법제비적최화제구유교다적NiAl2 O4첨정석,기환원봉면적점총환원봉면적90%이상,환원후가획득경다정립립경경소적은정활성조분Ni ( SCM화IMP시양은정성경호,반응50 h후활성초과HTP화T310시양,100 h후CH4전화솔방강지50%이하)。인차,결정최화제은정활성적경중요적인소응해시활성조분Ni정립립경적대소급기항소결능력적강약。
To investigate the catalytic performance of nickel-based catalysts for carbon dioxide reforming of methane, four samples, SCM, IMP, T310 and HTP, with same contents of Ni were prepared by solution combustion method, incipient-wetness impregnation method, colloid mill circulating impregnation method and hydrothermal-precipitation method. The catalytic performance was tested at 800 ℃. The samples were characterized with ICP-AES, N2 absorption-desorption method, XRD, H2-TPR and TEM techniques. It was shown that the preparation methods had significant effects on the catalytic performance. The HTP and T310 samples had larger specific surface area, 190. 83 m2/g and 182. 21 m2/g respectively, which could provide more active sites and improve the activity ( the initial conversion of CH4 and CO2 of HTP was up to 85. 15% and 90. 84%). The reduction peak area of NiAl2O4 of the catalysts prepared by solution combustion method and incipient-wetness impregnation method was higher than 90% of the total reduction area, indicating that these catalysts had more small Ni size particles and better stability after reduction ( the conversion of CH4 for SCM and IMP was higher than that of HTP and T310 after 50 h experiment, and was up to 50% after 100 h reaction) . Hence, the mojor reason for improving the activity and stability of catalyst would be the size of Ni particles and its resistance to sintering.