润滑与密封
潤滑與密封
윤활여밀봉
Lubrication Engineering
2015年
9期
89-92,156
,共5页
李昌杰%吕哲永%任靖日%蔡荣勲
李昌傑%呂哲永%任靖日%蔡榮勲
리창걸%려철영%임정일%채영훈
微凹痕图形%接触压力%Stribeck曲线%摩擦特性
微凹痕圖形%接觸壓力%Stribeck麯線%摩抆特性
미요흔도형%접촉압력%Stribeck곡선%마찰특성
micro dimple%contact pressure%Stribeck curve%friction
采用销-盘摩擦副接触方式,在常温、常压及液体润滑下,对不同密度的微凹椭圆表面图形进行摩擦试验,研究不同接触压力及滑动速度下,微凹椭圆图形密度和沿椭圆轴不同摩擦方向对摩擦性能的影响。利用Stribeck曲线分析在不同试验条件下,不同密度的微凹椭圆图形表面的摩擦特性。结果表明,在不同载荷下微凹痕椭圆图形的减摩效果随速度的增加而增大,且在不同滑动方向上减摩效果具有显著差异,但这种差异会随着微凹椭圆图形密度的增加而降低;随着密度的增加,摩擦因数降低,其原因是密度的增加更容易使摩擦状态从临界润滑状态转变成流体动力润滑状态。
採用銷-盤摩抆副接觸方式,在常溫、常壓及液體潤滑下,對不同密度的微凹橢圓錶麵圖形進行摩抆試驗,研究不同接觸壓力及滑動速度下,微凹橢圓圖形密度和沿橢圓軸不同摩抆方嚮對摩抆性能的影響。利用Stribeck麯線分析在不同試驗條件下,不同密度的微凹橢圓圖形錶麵的摩抆特性。結果錶明,在不同載荷下微凹痕橢圓圖形的減摩效果隨速度的增加而增大,且在不同滑動方嚮上減摩效果具有顯著差異,但這種差異會隨著微凹橢圓圖形密度的增加而降低;隨著密度的增加,摩抆因數降低,其原因是密度的增加更容易使摩抆狀態從臨界潤滑狀態轉變成流體動力潤滑狀態。
채용소-반마찰부접촉방식,재상온、상압급액체윤활하,대불동밀도적미요타원표면도형진행마찰시험,연구불동접촉압력급활동속도하,미요타원도형밀도화연타원축불동마찰방향대마찰성능적영향。이용Stribeck곡선분석재불동시험조건하,불동밀도적미요타원도형표면적마찰특성。결과표명,재불동재하하미요흔타원도형적감마효과수속도적증가이증대,차재불동활동방향상감마효과구유현저차이,단저충차이회수착미요타원도형밀도적증가이강저;수착밀도적증가,마찰인수강저,기원인시밀도적증가경용역사마찰상태종림계윤활상태전변성류체동력윤활상태。
By using pin?disk type friction pairs,under normal temperature,atmospheric pressure and fluid lubrication, the friction experiment of difference density of micro?dimple ellipse surface friction pattern was carried out. On different contact pressure and sliding velocity,the impact of density of micro?dimple ellipse pattern under the different direction of friction on friction property was researched. By using the Stribeck curves under the different test conditions, the friction property of different density of the dimple pattern was analyzed.The results show that the effect of reducing friction of mi?cro?dimple ellipse pattern under different load is increased with the increasing of velocity,and which has significant differ?ence on different sliding direction,but this difference will reduce with the raising of density of the pattern.Alone with the raising of density,the friction coefficient is decreased,the reason of which is that the increasing of density is more easier to make the friction state changes from the critical lubrication to hydrodynamic lubrication state.