电子与信息学报
電子與信息學報
전자여신식학보
Journal of Electronics & Information Technology
2015年
10期
2328-2334
,共7页
陈洪猛%李明%王泽玉%卢云龙%张鹏%左磊
陳洪猛%李明%王澤玉%盧雲龍%張鵬%左磊
진홍맹%리명%왕택옥%로운룡%장붕%좌뢰
机载雷达%实波束锐化%前视成像%贝叶斯准则%超分辨
機載雷達%實波束銳化%前視成像%貝葉斯準則%超分辨
궤재뢰체%실파속예화%전시성상%패협사준칙%초분변
Airborne radar%Real beam sharpening%Forward-looking imaging%Bayesian formalism%Super- resolution
针对机载单通道雷达前视分辨率不高的问题,该文提出一种基于多帧数据联合处理的贝叶斯前视成像方法。该文首先建立高斯背景下的前视回波信号模型,然后将散射场景的处理空间由单帧波束域的低维空间扩展到多帧波束域联合而成的高维空间以增加其空域稀疏性,并对散射场景的稀疏性进行统计建模。最后基于贝叶斯理论,将前视条件下的雷达成像转化为贝叶斯准则下的优化问题,并通过共轭梯度算法进行优化求解。在优化求解时,稀疏统计参数从数据迭代过程中估计得到。仿真结果和实测数据表明该方法不仅可以对前视场景进行高分辨成像,还可以抑制虚假散射点。
針對機載單通道雷達前視分辨率不高的問題,該文提齣一種基于多幀數據聯閤處理的貝葉斯前視成像方法。該文首先建立高斯揹景下的前視迴波信號模型,然後將散射場景的處理空間由單幀波束域的低維空間擴展到多幀波束域聯閤而成的高維空間以增加其空域稀疏性,併對散射場景的稀疏性進行統計建模。最後基于貝葉斯理論,將前視條件下的雷達成像轉化為貝葉斯準則下的優化問題,併通過共軛梯度算法進行優化求解。在優化求解時,稀疏統計參數從數據迭代過程中估計得到。倣真結果和實測數據錶明該方法不僅可以對前視場景進行高分辨成像,還可以抑製虛假散射點。
침대궤재단통도뢰체전시분변솔불고적문제,해문제출일충기우다정수거연합처리적패협사전시성상방법。해문수선건립고사배경하적전시회파신호모형,연후장산사장경적처리공간유단정파속역적저유공간확전도다정파속역연합이성적고유공간이증가기공역희소성,병대산사장경적희소성진행통계건모。최후기우패협사이론,장전시조건하적뢰체성상전화위패협사준칙하적우화문제,병통과공액제도산법진행우화구해。재우화구해시,희소통계삼수종수거질대과정중고계득도。방진결과화실측수거표명해방법불부가이대전시장경진행고분변성상,환가이억제허가산사점。
An adaptive Bayesian super-resolution imaging algorithm based on the combined multiple frames data is proposed to enhance the azimuth resolution of airborne single-channel forward-looking radar. The echo of the forward-looking radar in the Gaussian noise is modeled, and the processing space is expanded from the low dimension of single frame data to the high dimension of multiple frames data to enhance the sparsity of domain scatterers. During the framework, the sparsity of the scatterers is modeled in spatial domain, and the imaging is converted into a problem of signal optimization based on Bayesian formalism. The final optimal result can be solved by the conjugate gradient method. In this framework, the statistic parameter is estimated with data-driven. Simulation results demonstrate that the proposed algorithm both can increase the resolution of the forward-looking imaging results and suppress the artifacts.