汽车安全与节能学报
汽車安全與節能學報
기차안전여절능학보
JOURNAL OF AUTOMOTIVE SAFETY AND ENGERGY
2015年
3期
265-271
,共7页
混合动力汽车%成本模型%参数综合优化%模糊能量管理策略%多目标遗传算法
混閤動力汽車%成本模型%參數綜閤優化%模糊能量管理策略%多目標遺傳算法
혼합동력기차%성본모형%삼수종합우화%모호능량관리책략%다목표유전산법
hybrid electric vehicle%cost model%synthetic parameter optimization%fuzzy energy management strategy%multi-objective genetic algorithm
提出了一种并联式混合动力汽车(HEV)参数综合优化算法,以解决其能量管理与动力系统匹配经常各自独立进行的问题。该方法考虑电驱动系统成本,用改进型模糊能量管理策略,以能量管理策略参数、动力系统匹配参数为决策变量,以等效综合油耗、电机与电池组总成本为目标函数,在ADVISOR仿真环境下,用多目标遗传算法优化求解。结果表明:在保证整车动力性的前提下优化后,等效油耗降低23.0%,电机和电池组总成本降低41.9%;一氧化碳CO的100 km排放质量降低10.8%,碳氢化合物HC的排放降低22.2%,氮氧化物NOx的排放降低27.0%,改善了发动机效率与电机效率;验证了该方法的有效性。
提齣瞭一種併聯式混閤動力汽車(HEV)參數綜閤優化算法,以解決其能量管理與動力繫統匹配經常各自獨立進行的問題。該方法攷慮電驅動繫統成本,用改進型模糊能量管理策略,以能量管理策略參數、動力繫統匹配參數為決策變量,以等效綜閤油耗、電機與電池組總成本為目標函數,在ADVISOR倣真環境下,用多目標遺傳算法優化求解。結果錶明:在保證整車動力性的前提下優化後,等效油耗降低23.0%,電機和電池組總成本降低41.9%;一氧化碳CO的100 km排放質量降低10.8%,碳氫化閤物HC的排放降低22.2%,氮氧化物NOx的排放降低27.0%,改善瞭髮動機效率與電機效率;驗證瞭該方法的有效性。
제출료일충병련식혼합동력기차(HEV)삼수종합우화산법,이해결기능량관리여동력계통필배경상각자독립진행적문제。해방법고필전구동계통성본,용개진형모호능량관리책략,이능량관리책략삼수、동력계통필배삼수위결책변량,이등효종합유모、전궤여전지조총성본위목표함수,재ADVISOR방진배경하,용다목표유전산법우화구해。결과표명:재보증정차동력성적전제하우화후,등효유모강저23.0%,전궤화전지조총성본강저41.9%;일양화탄CO적100 km배방질량강저10.8%,탄경화합물HC적배방강저22.2%,담양화물NOx적배방강저27.0%,개선료발동궤효솔여전궤효솔;험증료해방법적유효성。
A synthetic parameter optimization method of hybrid electric vehicle (HEV) was proposed to solve the problem that energy management and matching of power system are usualy conducted respectively. Considering the cost of electric drive system and using an improved fuzzy energy management strategy, the parameters of energy management strategy and the parameters of power system were taken as decision variables; meanwhile the equivalent synthetic fuel consumption and the cost of motor and battery pack were taken as objective functions. Then under the simulation environment of ADVISOR, a multi-objective genetic algorithm was used to ifnd the optimal solution. Simulation results show that under the constrains of vehicle dynamic quality, the equal fuel consumption per 100km is reduced by 23.0%, the cost of motor and battery pack is reduced by 41.9%, the CO emissions per kilometer is reduced by 10.8%, the HC emissions per kilometer is reduced by 22.2%, the NOx emissions per kilometer is reduced by 27.0%, as wel as the efifciency of engine and motor has been improved. These results verify the effectiveness of the method.