计算机工程与应用
計算機工程與應用
계산궤공정여응용
Computer Engineering and Applications
2015年
20期
162-166
,共5页
变化检测%合成孔径雷达(SAR)图像%多智能体遗传算法
變化檢測%閤成孔徑雷達(SAR)圖像%多智能體遺傳算法
변화검측%합성공경뢰체(SAR)도상%다지능체유전산법
change detection%Synthetic Aperture Radar(SAR)image%multiagent genetic algorithm
针对传统进化算法在SAR图像变化检测时,容易陷入局部最优,收敛速度慢,耗时过长,为了解决这些问题,提出了一种无监督的多智能体遗传SAR图像变化检测方法。利用对数比值法对预处理后的图像构造差异影像,并对差异影像进行中值滤波处理,把它的灰度值作为输入信息,通过多智能体遗传算法搜索全局阈值,根据全局阈值得到变化检测结果。仿真结果表明,该算法与GA、ICSA相比,分类准确,收敛快速,效率更高。
針對傳統進化算法在SAR圖像變化檢測時,容易陷入跼部最優,收斂速度慢,耗時過長,為瞭解決這些問題,提齣瞭一種無鑑督的多智能體遺傳SAR圖像變化檢測方法。利用對數比值法對預處理後的圖像構造差異影像,併對差異影像進行中值濾波處理,把它的灰度值作為輸入信息,通過多智能體遺傳算法搜索全跼閾值,根據全跼閾值得到變化檢測結果。倣真結果錶明,該算法與GA、ICSA相比,分類準確,收斂快速,效率更高。
침대전통진화산법재SAR도상변화검측시,용역함입국부최우,수렴속도만,모시과장,위료해결저사문제,제출료일충무감독적다지능체유전SAR도상변화검측방법。이용대수비치법대예처리후적도상구조차이영상,병대차이영상진행중치려파처리,파타적회도치작위수입신식,통과다지능체유전산법수색전국역치,근거전국역치득도변화검측결과。방진결과표명,해산법여GA、ICSA상비,분류준학,수렴쾌속,효솔경고。
As the conventional evolutionary algorithms are often easy to trap in local optimum value, slowly convergent and time-consuming in dealing with the problem of Synthetic Aperture Radar(SAR)images change detection. In order to solve the problems, this paper proposes an unsupervised technique, namely multiagent genetic algorithm. The processed images are used to construct the difference image by logarithmic ratio, and the difference image is processed with medium value filter. Then the method takes the gray value as input information, uses the multi-agent genetic algorithm to search the global threshold. According to the global threshold, it gets the results in change detection. Simulation results show that the proposed method is more accuracy classification, faster convergence rate and more efficient than GA, ICSA.