电子测试
電子測試
전자측시
Electronic Test
2015年
19期
52-55
,共4页
进化算法%遗传算法%均匀交叉%进化硬件%电路设计%多目标优化
進化算法%遺傳算法%均勻交扠%進化硬件%電路設計%多目標優化
진화산법%유전산법%균균교차%진화경건%전로설계%다목표우화
evolutionary algorithm%genetic algorithm%uniform crossover%evolutionary hardware%circuit design%multi objective optimization
针对基于遗传算法的数字电路的多目标优化设计问题,采用了带有均匀交叉的遗传算法,并且考虑到了多种制约条件,如:电路的复杂度,功耗,信号延迟等。结果电路的正确性,构成的复杂度,功耗和信号延迟等指标,可以采用适应度函数来评价。通过自动生出2位全加器的实验,验证了这种方法的有效性。实验结果证明,新提出的方法,在最优适应度函数值和平均适应度函数值方面,优于传统的遗传算法。
針對基于遺傳算法的數字電路的多目標優化設計問題,採用瞭帶有均勻交扠的遺傳算法,併且攷慮到瞭多種製約條件,如:電路的複雜度,功耗,信號延遲等。結果電路的正確性,構成的複雜度,功耗和信號延遲等指標,可以採用適應度函數來評價。通過自動生齣2位全加器的實驗,驗證瞭這種方法的有效性。實驗結果證明,新提齣的方法,在最優適應度函數值和平均適應度函數值方麵,優于傳統的遺傳算法。
침대기우유전산법적수자전로적다목표우화설계문제,채용료대유균균교차적유전산법,병차고필도료다충제약조건,여:전로적복잡도,공모,신호연지등。결과전로적정학성,구성적복잡도,공모화신호연지등지표,가이채용괄응도함수래평개。통과자동생출2위전가기적실험,험증료저충방법적유효성。실험결과증명,신제출적방법,재최우괄응도함수치화평균괄응도함수치방면,우우전통적유전산법。
Aiming at the multi-objective optimization design of digital circuit based on genetic algorithm, a genetic algorithm with uniform crossover is adopted, and a variety of constraints are considered,such as the complexity of the circuit, power consumption, signal delay, etc.. Results the correctness of the circuit, the complexity, power consumption and signal delay and so on, can be used to evaluate the fitness function. The validity of this method is verified by the experiment of 2 full adder. Experimental results show that the new method is better than the traditional genetic algorithm in terms of optimal fitness function value and average fitness function value.