酿酒
釀酒
양주
Liquor Making
2015年
5期
90-95
,共6页
于政道%沈思杰%徐桂转%任天宝%宋安东%张百良
于政道%瀋思傑%徐桂轉%任天寶%宋安東%張百良
우정도%침사걸%서계전%임천보%송안동%장백량
蒸汽爆破%生物%总灰分%酸不溶性灰分%降解率%固相得率%溶解成分%挥发分
蒸汽爆破%生物%總灰分%痠不溶性灰分%降解率%固相得率%溶解成分%揮髮分
증기폭파%생물%총회분%산불용성회분%강해솔%고상득솔%용해성분%휘발분
steam explosion%biomass%silage corn straw%total ash%degradation rate%solid phase yield%soluble components%volatile components
生物质在蒸汽爆破过程中各类成分会发生多种物理化学变化,造成固相质量的理论减少;固液混合物可能被气流带出或飞溅出回收仓,造成固相质量的非理论减少.这两种因素使生物质爆破前后的物料衡算难以实现.通过对青贮玉米秸秆、小麦秸秆、玉米秸秆、玉米芯、花生壳五种生物质进行多种处理方式的对比试验,我们发现青贮玉米秸秆经2.0MPa\10min、2.4MPa\5min、2.8MPa\3min三种饱和蒸汽蒸煮工艺处理后,再以550℃\4h灼烧后的总灰分相对原料平均变化率分别为0.68%、0.38%和0.34%,其它四种生物质在蒸煮过程中灰分含量也保持了相对稳定,表明在2.8MPa压力以下的不同蒸煮工艺对不同生物质总灰分的绝对质量影响基本没有,所发生的物理化学变化基本不改变总灰分的质量.由于同温度下的蒸煮过程与汽爆过程所发生的物理化学变化类型基本相同,因此对灰分含量影响可以在很大程度上相互参照.只要保证灰分在固相中是均匀分布的,就可以通过汽爆前后总灰分或酸不溶性灰分在固相中的相对含量f0与f1确定出爆后总的固相得率v=f0/f1,并计算出固相中每种成分的爆后得率.从而为汽爆工艺优化与过程分析提供一种更为准确可靠的物料衡算分析方法.
生物質在蒸汽爆破過程中各類成分會髮生多種物理化學變化,造成固相質量的理論減少;固液混閤物可能被氣流帶齣或飛濺齣迴收倉,造成固相質量的非理論減少.這兩種因素使生物質爆破前後的物料衡算難以實現.通過對青貯玉米秸稈、小麥秸稈、玉米秸稈、玉米芯、花生殼五種生物質進行多種處理方式的對比試驗,我們髮現青貯玉米秸稈經2.0MPa\10min、2.4MPa\5min、2.8MPa\3min三種飽和蒸汽蒸煮工藝處理後,再以550℃\4h灼燒後的總灰分相對原料平均變化率分彆為0.68%、0.38%和0.34%,其它四種生物質在蒸煮過程中灰分含量也保持瞭相對穩定,錶明在2.8MPa壓力以下的不同蒸煮工藝對不同生物質總灰分的絕對質量影響基本沒有,所髮生的物理化學變化基本不改變總灰分的質量.由于同溫度下的蒸煮過程與汽爆過程所髮生的物理化學變化類型基本相同,因此對灰分含量影響可以在很大程度上相互參照.隻要保證灰分在固相中是均勻分佈的,就可以通過汽爆前後總灰分或痠不溶性灰分在固相中的相對含量f0與f1確定齣爆後總的固相得率v=f0/f1,併計算齣固相中每種成分的爆後得率.從而為汽爆工藝優化與過程分析提供一種更為準確可靠的物料衡算分析方法.
생물질재증기폭파과정중각류성분회발생다충물이화학변화,조성고상질량적이론감소;고액혼합물가능피기류대출혹비천출회수창,조성고상질량적비이론감소.저량충인소사생물질폭파전후적물료형산난이실현.통과대청저옥미갈간、소맥갈간、옥미갈간、옥미심、화생각오충생물질진행다충처리방식적대비시험,아문발현청저옥미갈간경2.0MPa\10min、2.4MPa\5min、2.8MPa\3min삼충포화증기증자공예처리후,재이550℃\4h작소후적총회분상대원료평균변화솔분별위0.68%、0.38%화0.34%,기타사충생물질재증자과정중회분함량야보지료상대은정,표명재2.8MPa압력이하적불동증자공예대불동생물질총회분적절대질량영향기본몰유,소발생적물이화학변화기본불개변총회분적질량.유우동온도하적증자과정여기폭과정소발생적물이화학변화류형기본상동,인차대회분함량영향가이재흔대정도상상호삼조.지요보증회분재고상중시균균분포적,취가이통과기폭전후총회분혹산불용성회분재고상중적상대함량f0여f1학정출폭후총적고상득솔v=f0/f1,병계산출고상중매충성분적폭후득솔.종이위기폭공예우화여과정분석제공일충경위준학가고적물료형산분석방법.
In biomass steam explosion (SE) process, the different components in biomass will occur physical and chemical changes which generate soluble products and volatile products because of high temperature and pressure steam and other materials. These cause theoretical decrease in biomass solid phase mass. In addition, it is inevitable that solid-liquid mixture is brought out by airflow or splashed out of recycle cavity in violent explosion shock wave of practical SE process, although the recycle cavity equips solid gas separation device. This causes non-theoretical decrease in biomass solid phase mass. Because the mass decrease by the two factors is difficult to detection, it is difficult to achieve quality balance between SE process before and after. And then, the abstract quality change of different components in biomass would be a barrier in SE technology optimization and process analysis. In order to solve this problem, we conducted contrast experiments with silage corn straw, wheat straw, corn straw, corncob and peanut shell, found that silage corn straw total ash quality rates of change are 0.68%, 0.38%and 0.34%after a boiling process in 2.0MPa\10min, 2.4MPa\5min and 2.8MPa\3min and a heating process in 550℃\4h. The other four kinds of biomass also remain relative stability in boiling processes. These indicate that different boiling conditions have little impact on different biomass total ash quality below 2.8MPa boiling process. Although boiling process and SE process have different degrade degrees, they have about same physical and chemical changes, include volatilization, sublimation and thermolysis. And then, the impact on ash quality between two processes would be cross references. Then if ash is equally distributed in solid phase, we can determine total solid phase yield(v) by the relative amount of total ash or nonacid-soluble ash before(f0) and after(f1) SE process:v=f0/f1, and then we can determine different components solid phase yield (cn) by their relative amount before (m0) and after (m1) SE process:cn=m1v/ m0. This method not only reflects solid phase quality theoretical decrease caused by soluble products (liquid phase) and volatile products (gas phase) generated in SE process, but also avoids experiment process errors caused by solid particle dissolved in liquid phase and splashed in explosion, provides a more accurate and reliable material balance calculate way for SE technology optimization and process analysis.