表面技术
錶麵技術
표면기술
Surface Technology
2015年
10期
27-32,45
,共7页
李锦妍%郝建民%陈永楠%陈宏
李錦妍%郝建民%陳永楠%陳宏
리금연%학건민%진영남%진굉
镁合金%微弧氧化%退膜%缓蚀剂%硝酸%氟化钾
鎂閤金%微弧氧化%退膜%緩蝕劑%硝痠%氟化鉀
미합금%미호양화%퇴막%완식제%초산%불화갑
magnesium alloy%micro-arc oxidation%stripping of the coating%corrosion inhibitor%nitrate%potassium fluoride
目的:提出一种镁合金微弧氧化膜层的退除工艺,提高镁合金的二次利用率。方法以硝酸、氟化钾、柠檬酸、十二烷基苯磺酸钠( SDBS)及缓蚀剂为组分配制退膜液,设计正交试验,以退除速率、表面粗糙度作为评判标准,优化退膜液配方。分析退膜液中各组分的作用,研究退膜过程中退膜量与时间的关系,讨论膜层厚度与腐蚀率、表面粗糙度的关系。采用优化的退膜液对镁合金微弧氧化膜层进行退除,观察表面宏观及微观形貌。结果退膜液各组分针对退膜速率和退膜后镁合金基体表面粗糙度的极差由大到小均依次为:R硝酸>R氟化钾>R柠檬酸>RSDBS>R缓蚀剂。对退膜速率和表面粗糙度影响最大的是硝酸浓度,其次是氟化钾浓度,柠檬酸、SDBS及缓蚀剂浓度的影响最小。在整个退膜过程中,膜层退除量与退膜时间并不呈线性关系。退膜开始阶段及完成阶段,膜层退除量大,退膜速率高;退膜中期,膜层退除量与退膜时间基本呈线性关系,且退膜速率小于初始退膜速率。 XRD分析显示,退膜后的镁合金表面无残余腐蚀产物。二次微弧氧化膜层的SEM图像显示,微孔结构致密,分布均匀,与一次微弧氧化的膜层无明显差别。结论镁合金微弧氧化膜层退除液的最佳配方为:硝酸90 mL/L,柠檬酸8 g/L,氟化钾35 g/L,十二烷基苯磺酸钠5 g/L,缓蚀剂6.5 g/L。该退膜液退膜效果良好,对镁合金基体损伤小,退膜速率快,成本低廉,可用于不合格镁合金零部件微弧氧化膜层的多次退除返修。
目的:提齣一種鎂閤金微弧氧化膜層的退除工藝,提高鎂閤金的二次利用率。方法以硝痠、氟化鉀、檸檬痠、十二烷基苯磺痠鈉( SDBS)及緩蝕劑為組分配製退膜液,設計正交試驗,以退除速率、錶麵粗糙度作為評判標準,優化退膜液配方。分析退膜液中各組分的作用,研究退膜過程中退膜量與時間的關繫,討論膜層厚度與腐蝕率、錶麵粗糙度的關繫。採用優化的退膜液對鎂閤金微弧氧化膜層進行退除,觀察錶麵宏觀及微觀形貌。結果退膜液各組分針對退膜速率和退膜後鎂閤金基體錶麵粗糙度的極差由大到小均依次為:R硝痠>R氟化鉀>R檸檬痠>RSDBS>R緩蝕劑。對退膜速率和錶麵粗糙度影響最大的是硝痠濃度,其次是氟化鉀濃度,檸檬痠、SDBS及緩蝕劑濃度的影響最小。在整箇退膜過程中,膜層退除量與退膜時間併不呈線性關繫。退膜開始階段及完成階段,膜層退除量大,退膜速率高;退膜中期,膜層退除量與退膜時間基本呈線性關繫,且退膜速率小于初始退膜速率。 XRD分析顯示,退膜後的鎂閤金錶麵無殘餘腐蝕產物。二次微弧氧化膜層的SEM圖像顯示,微孔結構緻密,分佈均勻,與一次微弧氧化的膜層無明顯差彆。結論鎂閤金微弧氧化膜層退除液的最佳配方為:硝痠90 mL/L,檸檬痠8 g/L,氟化鉀35 g/L,十二烷基苯磺痠鈉5 g/L,緩蝕劑6.5 g/L。該退膜液退膜效果良好,對鎂閤金基體損傷小,退膜速率快,成本低廉,可用于不閤格鎂閤金零部件微弧氧化膜層的多次退除返脩。
목적:제출일충미합금미호양화막층적퇴제공예,제고미합금적이차이용솔。방법이초산、불화갑、저몽산、십이완기분광산납( SDBS)급완식제위조분배제퇴막액,설계정교시험,이퇴제속솔、표면조조도작위평판표준,우화퇴막액배방。분석퇴막액중각조분적작용,연구퇴막과정중퇴막량여시간적관계,토론막층후도여부식솔、표면조조도적관계。채용우화적퇴막액대미합금미호양화막층진행퇴제,관찰표면굉관급미관형모。결과퇴막액각조분침대퇴막속솔화퇴막후미합금기체표면조조도적겁차유대도소균의차위:R초산>R불화갑>R저몽산>RSDBS>R완식제。대퇴막속솔화표면조조도영향최대적시초산농도,기차시불화갑농도,저몽산、SDBS급완식제농도적영향최소。재정개퇴막과정중,막층퇴제량여퇴막시간병불정선성관계。퇴막개시계단급완성계단,막층퇴제량대,퇴막속솔고;퇴막중기,막층퇴제량여퇴막시간기본정선성관계,차퇴막속솔소우초시퇴막속솔。 XRD분석현시,퇴막후적미합금표면무잔여부식산물。이차미호양화막층적SEM도상현시,미공결구치밀,분포균균,여일차미호양화적막층무명현차별。결론미합금미호양화막층퇴제액적최가배방위:초산90 mL/L,저몽산8 g/L,불화갑35 g/L,십이완기분광산납5 g/L,완식제6.5 g/L。해퇴막액퇴막효과량호,대미합금기체손상소,퇴막속솔쾌,성본저렴,가용우불합격미합금령부건미호양화막층적다차퇴제반수。
Objective To propose a stripping process of the magnesium alloy micro-arc oxidation coating, so as to improve the reutilization of the magnesium alloy. Methods The chemical solutions which contained nitrate acid, potassium fluoride, citric acid, SDBS and corrosion inhibitor was used to strip of the coating, and the orthogonal experiment was designed to optimize the formula-tion of the coating stripping solution, using the stripping rate and surface roughness and the judgment criteria. The role of each component in the coating stripping solution was analyzed. The relationship between the weight loss and time during the stripping process, and the relationship of coating thickness with corrosion rate and roughness were discussed. The optimized coating stripping solution was then used to strip the magnesium alloy micro-arc oxidation coating, and the macro- and microstructure of the surface was observed. Results The extreme difference of the chemical reagents on the stripping rate and surface roughness of the magnesi-um alloy substrate after stripping was in the order of Rnitrate acid>RKF>Rcitric acid>RSDBS>Rcor osion inhibitor , indicating that the concentration of nitrate acid had the biggest effect on the stripping rate and surface roughness, followed by the concentration of potassium fluo-ride, and the concentrations of citric acid, SDBS and corrosion inhibitor had the least effect. During the whole process, the weight loss and the time did not have a linear relationship. The weight loss and the stripping rate were high in the beginning and at the end of the process, while in the middle of the process the weight loss and the time had a linear relationship, with a stripping rate lower the initial stripping rate. There were no corrosion products on the surface of the magnesium alloy according to the XRD pattern. As shown by SEM, the pores in the layer after the second micro-arc oxidation treatment on magnesium alloy were compact and uni-form, which had no obvious difference with the coating after the first treatment. Conclusion The best composition of the stripping so-lution for of the magnesium alloy micro-arc oxidation coating was nitric acid 90 mL/L, citric acid 8 g/L, potassium fluoride 35 g/L, dodecyl benzene sulfonic acid sodium 5 g/L, and corrosion inhibitor 6. 5 g/L. This solution led to good stripping of the magnesium al-loy arc oxidation coating, causing little damage to the magnesium alloy substrate, and with high stripping rate and low cost. It can therefore be use to repeatedly strip and repair the unqualified magnesium alloy parts covered with the micro-arc oxide coating.