长江科学院院报
長江科學院院報
장강과학원원보
Journal of Yangtze River Scientific Research Institute
2015年
10期
23-27,32
,共6页
万臣%李建峰%赵勇%张金龙
萬臣%李建峰%趙勇%張金龍
만신%리건봉%조용%장금룡
沉降预测%BP 神经网络%马尔科夫链%大坝监测%长洲水利枢纽
沉降預測%BP 神經網絡%馬爾科伕鏈%大壩鑑測%長洲水利樞紐
침강예측%BP 신경망락%마이과부련%대패감측%장주수리추뉴
settlement prediction%BP neural network%Markov chain%dam monitoring%Changzhou water power junc-tion
基于组合预测思想,结合 BP 神经网络和马尔科夫链2种预测方法,构建了一种新维 BP 神经网络-马尔科夫链大坝沉降预测模型。通过对训练样本的学习,利用新维改进的 BP 神经网络算法实现了对沉降位移时间序列的滚动预测。在此基础上,借助马尔科夫链模型对其随机扰动误差进行修正,有效地提高了预测结果的精度。将构建的组合模型应用于长洲大坝船闸控制楼沉降位移时序预测中,研究结果表明该模型预测精度较高、可靠性好,提高了模型的中长期预测能力,为大坝沉降预测提供了一种有效的新方法。
基于組閤預測思想,結閤 BP 神經網絡和馬爾科伕鏈2種預測方法,構建瞭一種新維 BP 神經網絡-馬爾科伕鏈大壩沉降預測模型。通過對訓練樣本的學習,利用新維改進的 BP 神經網絡算法實現瞭對沉降位移時間序列的滾動預測。在此基礎上,藉助馬爾科伕鏈模型對其隨機擾動誤差進行脩正,有效地提高瞭預測結果的精度。將構建的組閤模型應用于長洲大壩船閘控製樓沉降位移時序預測中,研究結果錶明該模型預測精度較高、可靠性好,提高瞭模型的中長期預測能力,為大壩沉降預測提供瞭一種有效的新方法。
기우조합예측사상,결합 BP 신경망락화마이과부련2충예측방법,구건료일충신유 BP 신경망락-마이과부련대패침강예측모형。통과대훈련양본적학습,이용신유개진적 BP 신경망락산법실현료대침강위이시간서렬적곤동예측。재차기출상,차조마이과부련모형대기수궤우동오차진행수정,유효지제고료예측결과적정도。장구건적조합모형응용우장주대패선갑공제루침강위이시서예측중,연구결과표명해모형예측정도교고、가고성호,제고료모형적중장기예측능력,위대패침강예측제공료일충유효적신방법。
A dam settlement prediction model integrating BP neural network model and Markov chain prediction was built in this paper.Through emulating the training samples,rolling prediction for the settlement displacement time series was performed by the metabolism-improved BP neural network algorithm.Furthermore,Markov chain was used to correct its random disturbance and the prediction results were improved.This model was applied to the set-tlement displacement timing prediction of Changzhou dam lock control building.The result shows that the model has high prediction accuracy and good reliability.It improves the long-term prediction ability,and provides an effective method for dam settlement prediction.