烟台大学学报(自然科学与工程版)
煙檯大學學報(自然科學與工程版)
연태대학학보(자연과학여공정판)
Journal of Yantai University (Natural Science and Engineering Edition)
2015年
4期
289-293
,共5页
王嘉琛%逯静洲%高倩%朱旭
王嘉琛%逯靜洲%高倩%硃旭
왕가침%록정주%고천%주욱
损伤识别%钢框架结构%时间序列%主成分分析%自回归(AR)模型
損傷識彆%鋼框架結構%時間序列%主成分分析%自迴歸(AR)模型
손상식별%강광가결구%시간서렬%주성분분석%자회귀(AR)모형
damage identification%steel frame structure%time series%principal component analysis%auto regres-sive(AR) model
针对结构健康监测中基于时间序列分析实现损伤识别的问题,提出了一种利用AR模型的均方差根误差( RMSE)与主成分分析( PCA)的结构损伤识别方法。首先对加速度数据建立自回归AR模型,并求得模型的均方根误差。然后,采用主成分分析获取载荷矩阵,通过标准化处理后提出结构损伤特征指标并定位损伤发生的位置。为验证本文提出方法的可行性,对不同损伤工况下的钢框架模型进行了振动试验,利用该方法对各种损伤状况进行识别,识别结果与预设损伤情况相一致。结果表明,使用该方法可以充分利用大量实测数据,克服外界干扰因素所带来的影响,对于结构的损伤诊断具有较高的理论价值和实用价值。
針對結構健康鑑測中基于時間序列分析實現損傷識彆的問題,提齣瞭一種利用AR模型的均方差根誤差( RMSE)與主成分分析( PCA)的結構損傷識彆方法。首先對加速度數據建立自迴歸AR模型,併求得模型的均方根誤差。然後,採用主成分分析穫取載荷矩陣,通過標準化處理後提齣結構損傷特徵指標併定位損傷髮生的位置。為驗證本文提齣方法的可行性,對不同損傷工況下的鋼框架模型進行瞭振動試驗,利用該方法對各種損傷狀況進行識彆,識彆結果與預設損傷情況相一緻。結果錶明,使用該方法可以充分利用大量實測數據,剋服外界榦擾因素所帶來的影響,對于結構的損傷診斷具有較高的理論價值和實用價值。
침대결구건강감측중기우시간서렬분석실현손상식별적문제,제출료일충이용AR모형적균방차근오차( RMSE)여주성분분석( PCA)적결구손상식별방법。수선대가속도수거건립자회귀AR모형,병구득모형적균방근오차。연후,채용주성분분석획취재하구진,통과표준화처리후제출결구손상특정지표병정위손상발생적위치。위험증본문제출방법적가행성,대불동손상공황하적강광가모형진행료진동시험,이용해방법대각충손상상황진행식별,식별결과여예설손상정황상일치。결과표명,사용해방법가이충분이용대량실측수거,극복외계간우인소소대래적영향,대우결구적손상진단구유교고적이론개치화실용개치。
Aiming at the problem of the time series analysis in structural health monitoring ( SHM ) , a structural damage identification method based on the principal component analysis method ( PCA) for the root mean square error ( RMSE) of auto regressive ( AR) model is presented. Firstly, the AR model is established using acceleration response data, and the root mean square error of AR model is calculated. Then, the load matrix is obtained based on principal component analysis, and the structural damage characteristic index is proposed through standardized processing, on which the accurate location of the damage source is located. To further validate the feasibility of the proposed method, vibration test is conducted in different damage states, and the damage states are detected with the proposed method. The damage identification result is consistent with the predefined damage. Experimental result shows that the suggested method can make full use of a large number of measured data, eliminate the influence of external interference, and has highly theoretical and practical value on damage detection.