表面技术
錶麵技術
표면기술
Surface Technology
2015年
10期
111-116
,共6页
杜鹏%刘欣%郜友彬%李多生%裴锋%刘光明%田旭%蒋磊
杜鵬%劉訢%郜友彬%李多生%裴鋒%劉光明%田旭%蔣磊
두붕%류흔%고우빈%리다생%배봉%류광명%전욱%장뢰
酸性土壤%牺牲阳极%阴极保护%接地电阻%保护电位%保护电流
痠性土壤%犧牲暘極%陰極保護%接地電阻%保護電位%保護電流
산성토양%희생양겁%음겁보호%접지전조%보호전위%보호전류
acidic soil%sacrificial anode%cathodic protection%ground resistance%protective potential%protective current
目的:提高牺牲阳极的阴极保护法在酸性土壤中对接地网的防腐能力,分析牺牲阳极阴极保护法在酸性土壤中应用的技术要点,总结保护效果优化措施。方法设计牺牲阳极模拟系统,模拟地网面积为3.52 m2,保护电流设计为35.2 mA,对Q235碳钢和镀锌钢两种常用接地材料的接地电阻、保护电位及保护电流进行研究。结果该方法对镀锌钢保护较好,保护电位均低于-0.95 V;对Q235碳钢保护较差,保护电位部分高于-750 mV,且波动较大,最大波幅可达201 mV。系统运行中,计算得出保护电流在降雨量较大时最高可达30.75 mA,降雨量较小时最低为11.89 mA,均低于设计值。结论由于阳极处砂石较多、土壤电阻率高,阳极不能完全释放电流。其次,土壤保水性差,电阻率波动大,系统运行不稳定也抑制了保护效果。酸性土壤盐基性离子大量淋失,土壤电阻率普遍较高,且受降雨扰动较大,牺牲阳极工作效率较低且稳定性差。需采用适当提高保护电流、降低阳极区土壤电阻率、优化阳极设计工艺参数等措施以达到良好的保护效果。
目的:提高犧牲暘極的陰極保護法在痠性土壤中對接地網的防腐能力,分析犧牲暘極陰極保護法在痠性土壤中應用的技術要點,總結保護效果優化措施。方法設計犧牲暘極模擬繫統,模擬地網麵積為3.52 m2,保護電流設計為35.2 mA,對Q235碳鋼和鍍鋅鋼兩種常用接地材料的接地電阻、保護電位及保護電流進行研究。結果該方法對鍍鋅鋼保護較好,保護電位均低于-0.95 V;對Q235碳鋼保護較差,保護電位部分高于-750 mV,且波動較大,最大波幅可達201 mV。繫統運行中,計算得齣保護電流在降雨量較大時最高可達30.75 mA,降雨量較小時最低為11.89 mA,均低于設計值。結論由于暘極處砂石較多、土壤電阻率高,暘極不能完全釋放電流。其次,土壤保水性差,電阻率波動大,繫統運行不穩定也抑製瞭保護效果。痠性土壤鹽基性離子大量淋失,土壤電阻率普遍較高,且受降雨擾動較大,犧牲暘極工作效率較低且穩定性差。需採用適噹提高保護電流、降低暘極區土壤電阻率、優化暘極設計工藝參數等措施以達到良好的保護效果。
목적:제고희생양겁적음겁보호법재산성토양중대접지망적방부능력,분석희생양겁음겁보호법재산성토양중응용적기술요점,총결보호효과우화조시。방법설계희생양겁모의계통,모의지망면적위3.52 m2,보호전류설계위35.2 mA,대Q235탄강화도자강량충상용접지재료적접지전조、보호전위급보호전류진행연구。결과해방법대도자강보호교호,보호전위균저우-0.95 V;대Q235탄강보호교차,보호전위부분고우-750 mV,차파동교대,최대파폭가체201 mV。계통운행중,계산득출보호전류재강우량교대시최고가체30.75 mA,강우량교소시최저위11.89 mA,균저우설계치。결론유우양겁처사석교다、토양전조솔고,양겁불능완전석방전류。기차,토양보수성차,전조솔파동대,계통운행불은정야억제료보호효과。산성토양염기성리자대량림실,토양전조솔보편교고,차수강우우동교대,희생양겁공작효솔교저차은정성차。수채용괄당제고보호전류、강저양겁구토양전조솔、우화양겁설계공예삼수등조시이체도량호적보호효과。
Objective To improve the corrosion resistance of galvanic anode cathodic protection for grounding grid in acidic soil, analyze key technologies of the application of galvanic anode cathodic protection method in acid soil and summarize measures for improving the protection effect. Methods The designed simulated expendable anode system was applied to widely investigate grounding resistance, protection potential and protection current of Q235 steel and galvanized steel with 3. 52 m2 grounding grid and 35. 2 mA protection current. Results Galvanized steel was well protected and the protective potential was lower than-0. 95 V. But the protection of Q235 steel was less effective, and the protective potential exceeded -750 mV with fluctuation of 210 mV some-times. During the operation, the protective current could reach 30. 75 mA when the precipitation was high, and was reduced to 11. 89 mA when the precipitation was low, both of which were lower than the design values. Conclusion This was mainly due to high soil resistivity in the anode environment, more gravel resulted in less anode current. Second, poor soil water retention, resist-ance fluctuations, and unstable systems also decreased the protective effect. The salinity of acidic soil was greatly lost. The soil re-sistivity was high and disturbed by rainfall, so the work efficiency and stability were limited. Protection current was improved by measures such as reasonable increase of protection current, reduction of soil resistivity in the anode environment, and optimization of anode design process parameters.