工程塑料应用
工程塑料應用
공정소료응용
Engineering Plastics Application
2015年
9期
1-6
,共6页
徐华根%彭新涛%周军杰%陈晓东%刘引烽
徐華根%彭新濤%週軍傑%陳曉東%劉引烽
서화근%팽신도%주군걸%진효동%류인봉
热导率%聚酰胺6%聚丙烯%鳞片石墨分布%体积排除
熱導率%聚酰胺6%聚丙烯%鱗片石墨分佈%體積排除
열도솔%취선알6%취병희%린편석묵분포%체적배제
thermal conductivity%polyamide 6%polypropylene%distribution of flake graphite%size-exclusion
为了降低聚合物基导热复合材料中填料的含量,用聚酰胺6(PA6)/聚丙烯(PP)两相聚合物作为基体,研究了PA6/PP/鳞片石墨(FG)和PA6/FG复合材料的热导率随FG含量的变化规律。PA6/FG复合材料中FG质量分数为30%时,复合材料的热导率为1.85 W/(m·K),而PA6/PP/FG复合材料热导率达到1.88 W/(m·K)时,FG的质量分数仅需20%,说明PP作为体积排除相,优化了FG在PA6中的分布。以PA6/PP作为基体,达到与PA6单一基体相近的热导率时可以降低FG的填充量,改善导热复合材料的加工性能和力学性能。同时研究了不同FG含量下两种复合材料的电阻率,结果发现,在FG质量分数为30%时,PA6/PP/FG复合材料的体积电阻率比PA6/FG的体积电阻率低两个数量级,间接证实PP的加入改变了FG在PA6中的分布。用扫描电子显微镜对FG在PA6/PP/FG复合材料中的分布进行了研究,结果表明,当FG质量分数超过30%时,FG相互之间的接触增多。
為瞭降低聚閤物基導熱複閤材料中填料的含量,用聚酰胺6(PA6)/聚丙烯(PP)兩相聚閤物作為基體,研究瞭PA6/PP/鱗片石墨(FG)和PA6/FG複閤材料的熱導率隨FG含量的變化規律。PA6/FG複閤材料中FG質量分數為30%時,複閤材料的熱導率為1.85 W/(m·K),而PA6/PP/FG複閤材料熱導率達到1.88 W/(m·K)時,FG的質量分數僅需20%,說明PP作為體積排除相,優化瞭FG在PA6中的分佈。以PA6/PP作為基體,達到與PA6單一基體相近的熱導率時可以降低FG的填充量,改善導熱複閤材料的加工性能和力學性能。同時研究瞭不同FG含量下兩種複閤材料的電阻率,結果髮現,在FG質量分數為30%時,PA6/PP/FG複閤材料的體積電阻率比PA6/FG的體積電阻率低兩箇數量級,間接證實PP的加入改變瞭FG在PA6中的分佈。用掃描電子顯微鏡對FG在PA6/PP/FG複閤材料中的分佈進行瞭研究,結果錶明,噹FG質量分數超過30%時,FG相互之間的接觸增多。
위료강저취합물기도열복합재료중전료적함량,용취선알6(PA6)/취병희(PP)량상취합물작위기체,연구료PA6/PP/린편석묵(FG)화PA6/FG복합재료적열도솔수FG함량적변화규률。PA6/FG복합재료중FG질량분수위30%시,복합재료적열도솔위1.85 W/(m·K),이PA6/PP/FG복합재료열도솔체도1.88 W/(m·K)시,FG적질량분수부수20%,설명PP작위체적배제상,우화료FG재PA6중적분포。이PA6/PP작위기체,체도여PA6단일기체상근적열도솔시가이강저FG적전충량,개선도열복합재료적가공성능화역학성능。동시연구료불동FG함량하량충복합재료적전조솔,결과발현,재FG질량분수위30%시,PA6/PP/FG복합재료적체적전조솔비PA6/FG적체적전조솔저량개수량급,간접증실PP적가입개변료FG재PA6중적분포。용소묘전자현미경대FG재PA6/PP/FG복합재료중적분포진행료연구,결과표명,당FG질량분수초과30%시,FG상호지간적접촉증다。
Polyamide 6(PA6)/polypropylene(PP) as a two-phase polymer matrix was used to reduce the filler content of thermally conductive composites based on polymer materials. Thermal conductivities of both PA6/PP/flake graphite(FG) and PA6/FG composites with different FG content were studied. Thermal conductivity of PA6/FG composite is 1.85 W/(m·K) when FG content is 30%;while thermal conductivity of PA6/PP/FG composite could reached to 1.88 W/(m·K) as long as FG content is 20%. This implies that PP as a size-exclusion phase could optimize the distribution of FG in PA6. FG content could be reduced when thermal conductivities of PA6/PP/FG composites reach to the same value as PA6/FG composites, thus could improve the processing performance and mechanical properties of thermally conductive composites. Electrical resistivities of PA6/PP/FG and PA6/FG composites were also studied. The results show that the volume electrical resistivity of PA6/PP/FG composite is two orders of magnitude lower than PA6/FG composite when FG content is 30%. This indicates that the addition of PP changes the distribution of FG in PA6. The distribution of FG in PA6/PP/FG composite was studied by SEM. It showes that the possibility of FG contact with each other is increased when the content exceeds 30%.