中国农村水利水电
中國農村水利水電
중국농촌수이수전
China Rural Water and Hydropower
2015年
9期
34-39
,共6页
汾河上游%EMD分解%粒子群优化算法%非线性灰色 Bernoulli模型%径流预测
汾河上遊%EMD分解%粒子群優化算法%非線性灰色 Bernoulli模型%徑流預測
분하상유%EMD분해%입자군우화산법%비선성회색 Bernoulli모형%경류예측
upper reaches of the Fenhe River%empirical mode decomposition%particle swarm optimization%Nash NGBM (1,1) model%runoff forecasting
针对径流是典型非平稳序列这一特点及目前存在的径流中长期预测精度低的问题,提出一种新的耦合预测方法基于经验模态分解(Empirical Mode Decomposition ,EMD)与粒子群优化算法(Particle Swarm Optimization , PSO)的非线性灰色Bernoulli耦合模型(Nash Nonlinear Grey Bernoulli Model ,Nash NGBM )。首先利用EMD方法对汾河上游上静游、汾河水库、寨上和兰村4个水文站的年径流序列进行平稳化处理,分别得到若干个固有模态函数(In‐trinsic Mode Function ,IMF),对各阶IMF分别建立基于PSO算法的Nash NGBM(1,1)模型并进行预测,趋势项用多项式拟合并进行预测,然后通过重构各预测值得到汾河上游4个水文站年径流量的预测结果,并与单独运用基于PSO算法Nash NGBM (1,1)模型的预测结果进行比较,对模型作出评价。结果表明,基于EMD与PSO算法的Nash NGBM (1,1)耦合模型的拟合精度在92.5%以上,预测精度均达到了100%,其预测精度比单独运用基于 PSO算法 Nash NGBM (1,1)模型的预测精度有了明显提高;基于EMD与PSO算法的Nash NGBM (1,1)耦合预测方法的提出为径流中长期预测精度的提高提供了新的思路,对区域水资源的合理配置与优化调度具有重要的理论意义和实际价值。
針對徑流是典型非平穩序列這一特點及目前存在的徑流中長期預測精度低的問題,提齣一種新的耦閤預測方法基于經驗模態分解(Empirical Mode Decomposition ,EMD)與粒子群優化算法(Particle Swarm Optimization , PSO)的非線性灰色Bernoulli耦閤模型(Nash Nonlinear Grey Bernoulli Model ,Nash NGBM )。首先利用EMD方法對汾河上遊上靜遊、汾河水庫、寨上和蘭村4箇水文站的年徑流序列進行平穩化處理,分彆得到若榦箇固有模態函數(In‐trinsic Mode Function ,IMF),對各階IMF分彆建立基于PSO算法的Nash NGBM(1,1)模型併進行預測,趨勢項用多項式擬閤併進行預測,然後通過重構各預測值得到汾河上遊4箇水文站年徑流量的預測結果,併與單獨運用基于PSO算法Nash NGBM (1,1)模型的預測結果進行比較,對模型作齣評價。結果錶明,基于EMD與PSO算法的Nash NGBM (1,1)耦閤模型的擬閤精度在92.5%以上,預測精度均達到瞭100%,其預測精度比單獨運用基于 PSO算法 Nash NGBM (1,1)模型的預測精度有瞭明顯提高;基于EMD與PSO算法的Nash NGBM (1,1)耦閤預測方法的提齣為徑流中長期預測精度的提高提供瞭新的思路,對區域水資源的閤理配置與優化調度具有重要的理論意義和實際價值。
침대경류시전형비평은서렬저일특점급목전존재적경류중장기예측정도저적문제,제출일충신적우합예측방법기우경험모태분해(Empirical Mode Decomposition ,EMD)여입자군우화산법(Particle Swarm Optimization , PSO)적비선성회색Bernoulli우합모형(Nash Nonlinear Grey Bernoulli Model ,Nash NGBM )。수선이용EMD방법대분하상유상정유、분하수고、채상화란촌4개수문참적년경류서렬진행평은화처리,분별득도약간개고유모태함수(In‐trinsic Mode Function ,IMF),대각계IMF분별건립기우PSO산법적Nash NGBM(1,1)모형병진행예측,추세항용다항식의합병진행예측,연후통과중구각예측치득도분하상유4개수문참년경류량적예측결과,병여단독운용기우PSO산법Nash NGBM (1,1)모형적예측결과진행비교,대모형작출평개。결과표명,기우EMD여PSO산법적Nash NGBM (1,1)우합모형적의합정도재92.5%이상,예측정도균체도료100%,기예측정도비단독운용기우 PSO산법 Nash NGBM (1,1)모형적예측정도유료명현제고;기우EMD여PSO산법적Nash NGBM (1,1)우합예측방법적제출위경류중장기예측정도적제고제공료신적사로,대구역수자원적합리배치여우화조도구유중요적이론의의화실제개치。
Considering the universally non-stationary property of runoff time series and the problem of low predicting accuracy of mid-long runoff forecasting ,a new time series prediction method-Nash NGBM (1 ,1) model based on Empirical Mode Decomposition (EMD) and Particle Swarm Optimization (PSO) ,is proposed in this paper .First ,the EMD is used to make the time series stationa‐ry ,obtaining the intrinsic mode function of different time scales .Then all the intrinsic mode functions is predicted by using Nash NGBM (1 ,1) model based on PSO .The residue by quadratic polynomial equation is predicted ,the predicted values are reconstructed as the predicted values of annual runoff .Lastly ,the predicting values are compared and evaluated with sole PSO-NGBM (1 ,1) model's .The results show that:the fitting accuracy of Nash NGBM (1 ,1) model based on EMD and PSO is all above 92 .5% ,and the pre‐dicting accuracy is all up to 100% .Compared with the results of Nash NGBM(1 ,1) model based on PSO ,the fitting and predicting accuracy of this coupled model has been improved .The proposal of Nash NGBM (1 ,1) model based on EMD and PSO provides a new idea for the improvement of predicting accuracy of mid-long runoff forecasting .It is of practical significance to the rational allocation and optimal operation of water resources .