农业工程学报
農業工程學報
농업공정학보
Transactions of the Chinese Society of Agricultural Engineering
2015年
19期
228-233
,共6页
李刚%郝炯驹%贺超%王少鹏%苏煌%焦有宙
李剛%郝炯駒%賀超%王少鵬%囌煌%焦有宙
리강%학형구%하초%왕소붕%소황%초유주
粪%发酵%甲烷%密度%黏度%分层%流变特性
糞%髮酵%甲烷%密度%黏度%分層%流變特性
분%발효%갑완%밀도%점도%분층%류변특성
manures%fermentation%methane%density%viscosity%stratification%rheological properties
厌氧发酵过程中,物料分层及各层料液黏度、密度等参数是搅拌装置设计的重要依据。该文采用接力试验研究了牛粪中温厌氧发酵过程中各层料液基础物性的变化情况。结果表明:牛粪厌氧发酵过程中,反应器中料液密度自上而下逐渐变大,且各层密度随总固体含量增加而升高,反应过程中各层密度均在发酵第4天达到最大值,料液总固体质量分数为4%、6%、8%时对应的上中下层溶液的密度最大值分别为1.02、1和1.02,1.02、1.03和1.07,1.03、1.03和1.07 g/cm3。受料液分层的影响,反应器中上层和中层料液黏度呈先增大后减小并逐步趋于稳定,下层料液黏度以初始黏度为最大,且不同初始料液总固体含量对黏度变化过程具有显著影响,TS=4%时,上、中层料液黏度分别在第7天、第4天达到最大值11.5和14.7 mPa·s,下层初始最大黏度为107 mPa·s;TS=6%、8%时,上、中层料液黏度均在第4天达到最大值,上层料液黏度最大值分别为25.5和63.5 mPa·s,中层料液黏度最大值分别为15.5和95.5 mPa·s,下层初始最大黏度分别为135.5和185.5 mPa·s。随着初始物料总固体含量的增加日产气量也相应增高,产气高峰出现时间相应提前;TS=8%时的累积产气量分别比6%和4%提高了21.4%和8.71%,但产气中甲烷含量增加速率基本相同,并在第10天左右基本趋于稳定。该结果可为厌氧发酵反应器的搅拌装置设计提供参考。
厭氧髮酵過程中,物料分層及各層料液黏度、密度等參數是攪拌裝置設計的重要依據。該文採用接力試驗研究瞭牛糞中溫厭氧髮酵過程中各層料液基礎物性的變化情況。結果錶明:牛糞厭氧髮酵過程中,反應器中料液密度自上而下逐漸變大,且各層密度隨總固體含量增加而升高,反應過程中各層密度均在髮酵第4天達到最大值,料液總固體質量分數為4%、6%、8%時對應的上中下層溶液的密度最大值分彆為1.02、1和1.02,1.02、1.03和1.07,1.03、1.03和1.07 g/cm3。受料液分層的影響,反應器中上層和中層料液黏度呈先增大後減小併逐步趨于穩定,下層料液黏度以初始黏度為最大,且不同初始料液總固體含量對黏度變化過程具有顯著影響,TS=4%時,上、中層料液黏度分彆在第7天、第4天達到最大值11.5和14.7 mPa·s,下層初始最大黏度為107 mPa·s;TS=6%、8%時,上、中層料液黏度均在第4天達到最大值,上層料液黏度最大值分彆為25.5和63.5 mPa·s,中層料液黏度最大值分彆為15.5和95.5 mPa·s,下層初始最大黏度分彆為135.5和185.5 mPa·s。隨著初始物料總固體含量的增加日產氣量也相應增高,產氣高峰齣現時間相應提前;TS=8%時的纍積產氣量分彆比6%和4%提高瞭21.4%和8.71%,但產氣中甲烷含量增加速率基本相同,併在第10天左右基本趨于穩定。該結果可為厭氧髮酵反應器的攪拌裝置設計提供參攷。
염양발효과정중,물료분층급각층료액점도、밀도등삼수시교반장치설계적중요의거。해문채용접력시험연구료우분중온염양발효과정중각층료액기출물성적변화정황。결과표명:우분염양발효과정중,반응기중료액밀도자상이하축점변대,차각층밀도수총고체함량증가이승고,반응과정중각층밀도균재발효제4천체도최대치,료액총고체질량분수위4%、6%、8%시대응적상중하층용액적밀도최대치분별위1.02、1화1.02,1.02、1.03화1.07,1.03、1.03화1.07 g/cm3。수료액분층적영향,반응기중상층화중층료액점도정선증대후감소병축보추우은정,하층료액점도이초시점도위최대,차불동초시료액총고체함량대점도변화과정구유현저영향,TS=4%시,상、중층료액점도분별재제7천、제4천체도최대치11.5화14.7 mPa·s,하층초시최대점도위107 mPa·s;TS=6%、8%시,상、중층료액점도균재제4천체도최대치,상층료액점도최대치분별위25.5화63.5 mPa·s,중층료액점도최대치분별위15.5화95.5 mPa·s,하층초시최대점도분별위135.5화185.5 mPa·s。수착초시물료총고체함량적증가일산기량야상응증고,산기고봉출현시간상응제전;TS=8%시적루적산기량분별비6%화4%제고료21.4%화8.71%,단산기중갑완함량증가속솔기본상동,병재제10천좌우기본추우은정。해결과가위염양발효반응기적교반장치설계제공삼고。
In the process of anaerobic fermentation, the material stratification and the parameters of the stratified fermentation fluid, such as viscosity and density, are the key foundation of the stirring device design. In this paper, the relay methods were adopted to investigate the variation of the basic properties of stratified anaerobic fermentation fluid in the process of cow dung anaerobic fermentation at mesophilic temperature. The results demonstrated that the densities of the fermentation fluid increased from top to bottom in the reactor, and increased along with the increase of substrate concentration. In the process, the maximum density of each stratified fluid appeared on the 4th day; when Total solid were 4%, 6% and 8%, the maximum densities were 1.02, 1.02 and 1.03 g/cm3 in the top layer, 1, 1.03 and 1.03 g/cm3 in the middle layer, and 1.02, 1.07 and 1.07 g/cm3 in the bottom layer, respectively. The viscosities of fermentation fluid in the top and middle layer of the reactor increased in primary stage, then got decreasing and tended to be stable at last under the influence of the liquid stratification. The maximum viscosity of the liquid in the bottom layer was the initial viscosity, and the initial substrate concentration affected the viscosity change significantly. When TS was 4%, the viscosities of the fluid in the top and middle layer reached the maximum on the 7th and 4th day, respectively, and the maximum viscosities were 11.5 and 14.7 mPa·s, respectively; the maximum viscosity of bottom layer was 107 mPa·s. When TS was 6%, the viscosities of the fluid in the top and middle layer reached the maximum on the 4th day, and the maximum viscosities were 25.5 and 15.5 mPa·s, respectively; the maximum viscosity of bottom layer was 135.5 mPa·s. When TS was 8%, the viscosities of the fluid in top and middle layer reached the maximum on the 4th day, and the maximum viscosities were 63.5 and 95.5 mPa·s, respectively; the maximum viscosity of bottom layer was 185.5 mPa·s. Daily gas yield increased and the gas peak appeared earlier with the increase of the substrate concentration. The cumulative gas yield with the TS of 8% was 21.4% and 8.71% higher than those with the TS of 6% and 4%, respectively, while the increase of methane content of the biogas was almost the same, and basically stable around on the 10th day.