红外与激光工程
紅外與激光工程
홍외여격광공정
Infrared and Laser Engineering
2015年
10期
2938-2943
,共6页
柳鸣%李丹妮%张国玉%孙向阳%赵昭%段洁
柳鳴%李丹妮%張國玉%孫嚮暘%趙昭%段潔
류명%리단니%장국옥%손향양%조소%단길
红外瞄具%可靠性检测%红外平行光管%温度控制%自适应模糊PID
紅外瞄具%可靠性檢測%紅外平行光管%溫度控製%自適應模糊PID
홍외묘구%가고성검측%홍외평행광관%온도공제%자괄응모호PID
IR aiming device%reliability detection%IR collimator%temperature control%self-adaption fuzzy PID
为了检测红外瞄具在高低温恶劣环境下对不同波长的红外目标成像可靠性, 利用黑体和平行光管组成的光学系统模拟无穷远红外目标, 红外瞄具置于高低温环境下,CCD采集红外瞄具对红外目标所成的像,从而判定高低温下红外瞄具成像质量. 所设计的平行光管视场大,各波长对应焦平面处在20 lp/mm空间频率下的MTF均高于0.2. 同时为了实现快速准确地在检测系统中提供稳定的-55~70 ℃的高低温实验条件,采用一种基于自适应模糊PID温度控制技术. 采用自适应因子将模糊推理器和PID控制器相结合, 通过在线自调整控制参数, 进一步提高了PID控制器的性能和系统的控制精度. 实验表明该方法提高了常规PID控制的动态响应过程并保持无静态误差, 其控制精度可达±0.05 ℃.
為瞭檢測紅外瞄具在高低溫噁劣環境下對不同波長的紅外目標成像可靠性, 利用黑體和平行光管組成的光學繫統模擬無窮遠紅外目標, 紅外瞄具置于高低溫環境下,CCD採集紅外瞄具對紅外目標所成的像,從而判定高低溫下紅外瞄具成像質量. 所設計的平行光管視場大,各波長對應焦平麵處在20 lp/mm空間頻率下的MTF均高于0.2. 同時為瞭實現快速準確地在檢測繫統中提供穩定的-55~70 ℃的高低溫實驗條件,採用一種基于自適應模糊PID溫度控製技術. 採用自適應因子將模糊推理器和PID控製器相結閤, 通過在線自調整控製參數, 進一步提高瞭PID控製器的性能和繫統的控製精度. 實驗錶明該方法提高瞭常規PID控製的動態響應過程併保持無靜態誤差, 其控製精度可達±0.05 ℃.
위료검측홍외묘구재고저온악렬배경하대불동파장적홍외목표성상가고성, 이용흑체화평행광관조성적광학계통모의무궁원홍외목표, 홍외묘구치우고저온배경하,CCD채집홍외묘구대홍외목표소성적상,종이판정고저온하홍외묘구성상질량. 소설계적평행광관시장대,각파장대응초평면처재20 lp/mm공간빈솔하적MTF균고우0.2. 동시위료실현쾌속준학지재검측계통중제공은정적-55~70 ℃적고저온실험조건,채용일충기우자괄응모호PID온도공제기술. 채용자괄응인자장모호추리기화PID공제기상결합, 통과재선자조정공제삼수, 진일보제고료PID공제기적성능화계통적공제정도. 실험표명해방법제고료상규PID공제적동태향응과정병보지무정태오차, 기공제정도가체±0.05 ℃.
In order to detect the imaging reliability of infrared target with difference wavelength at high& low temperature,black body and IR collimator are adopted to simulate infinite target,IR aiming device is located in high & low temperature and image of IR target is captured by CCD so as to judge the imaging quality of IR aiming device. The designed collimator was with wild-field and its MTF at 20 lp/mm spatial frequency was higher than 0.2 in corresponding focal plane of different wavelength. Meanwhile in order to provide an stable -55 ℃-70 ℃ high & low temperature testing condition rapidly and accurately, a self-adaption fuzzy PID temperature control technology was provided. Adaptive factor was adopted to combine fuzzy inferior and PID controller. By adjusting control parameters on-line, the performance of PID controller was further improved and system control accuracy was raised up. Theexperimental results show that this method not only improves the dynamic response process but also guarantee no static error. The temperature control precision is ±0.05℃.