红外与激光工程
紅外與激光工程
홍외여격광공정
Infrared and Laser Engineering
2015年
10期
3155-3160
,共6页
赵慧洁%李明康%李娜%丁昊%蔡辉
趙慧潔%李明康%李娜%丁昊%蔡輝
조혜길%리명강%리나%정호%채휘
波段选择%高光谱图像%子空间划分
波段選擇%高光譜圖像%子空間劃分
파단선택%고광보도상%자공간화분
band selection%hyperspectral image%subspace partition
高光谱图像具有光谱分辨率高、波段连续、数据量大、图谱合一等特点.然而较高的光谱分辨率会造成波段间相关性强,信息冗余多.所以如何从数百个高光谱波段中选出有利于识别或分类的波段组合成为了高光谱应用需要解决的问题.文章针对相邻波段间相关性较大的特点,提出一种改进的对波段相关矩阵进行全局搜索的子空间划分的波段选择方法.该方法克服了传统只利用相关向量对波段进行划分的缺陷,利用整个相关矩阵进行全局搜索划分,再在划分后的子空间内进行波段选择,从而降低了波段之间的相关性.文章最后使用上述方法对AVIRIS数据进行波段选择,并通过SVM方法对其进行地物分类,结果表明该方法较不进行子空间划分的波段选择方法有较高的分类精度.
高光譜圖像具有光譜分辨率高、波段連續、數據量大、圖譜閤一等特點.然而較高的光譜分辨率會造成波段間相關性彊,信息冗餘多.所以如何從數百箇高光譜波段中選齣有利于識彆或分類的波段組閤成為瞭高光譜應用需要解決的問題.文章針對相鄰波段間相關性較大的特點,提齣一種改進的對波段相關矩陣進行全跼搜索的子空間劃分的波段選擇方法.該方法剋服瞭傳統隻利用相關嚮量對波段進行劃分的缺陷,利用整箇相關矩陣進行全跼搜索劃分,再在劃分後的子空間內進行波段選擇,從而降低瞭波段之間的相關性.文章最後使用上述方法對AVIRIS數據進行波段選擇,併通過SVM方法對其進行地物分類,結果錶明該方法較不進行子空間劃分的波段選擇方法有較高的分類精度.
고광보도상구유광보분변솔고、파단련속、수거량대、도보합일등특점.연이교고적광보분변솔회조성파단간상관성강,신식용여다.소이여하종수백개고광보파단중선출유리우식별혹분류적파단조합성위료고광보응용수요해결적문제.문장침대상린파단간상관성교대적특점,제출일충개진적대파단상관구진진행전국수색적자공간화분적파단선택방법.해방법극복료전통지이용상관향량대파단진행화분적결함,이용정개상관구진진행전국수색화분,재재화분후적자공간내진행파단선택,종이강저료파단지간적상관성.문장최후사용상술방법대AVIRIS수거진행파단선택,병통과SVM방법대기진행지물분류,결과표명해방법교불진행자공간화분적파단선택방법유교고적분류정도.
Hyperspectral image has hundreds of successively narrow bands, which brings serious problems such as large correlation and redundant information. The selection of the optimal bands, which are suited for classification or recognition, has become a difficult work that needs to be overcome. In order to solve the problem of the large correlation among bands, a band selection method based on improved subspace partition through global search on correlation matrix was proposed. Through a global search, the band correlation matrix was divided into a series of subspace, from which the optimal bands were finally selected. The proposed method provides a band selection which has small correlation between each other. The result of an experiment which used Support Vector Machine (SVM) on an AVIRIS image shows that the proposed method is valid.