计算机应用研究
計算機應用研究
계산궤응용연구
Application Research of Computers
2015年
11期
3368-3370,3374
,共4页
云存储%副本选择%蚁群算法%OpenStack 模式
雲存儲%副本選擇%蟻群算法%OpenStack 模式
운존저%부본선택%의군산법%OpenStack 모식
cloud storage%replica selection%ant algorithm%OpenStack
针对云存储技术中副本选择优化问题,提出一种基于蚁群原理的云存储副本动态选择算法。构建基于蚁群的副本动态选择模型,建立副本选择度量标准(如带宽占用、网络路径时延和平均访问时间等)与蚁群信息素的映射,并对虚拟机实例负载状况和虚拟机集群资源利用状况进行量化评估,感知所监控的云节点的资源度量情况;最后利用副本信息素概率计算式得到一组选择副本资源的最优解,最终达到优化负载均衡的目的。经OpenStack 模式的云平台对新算法仿真实现,实验结果表明新算法成功实现了副本的有效分发和虚拟机集群的负载均衡,与 Round Robin 和 Server Load 算法相比,新算法有更好的负载均衡效果。
針對雲存儲技術中副本選擇優化問題,提齣一種基于蟻群原理的雲存儲副本動態選擇算法。構建基于蟻群的副本動態選擇模型,建立副本選擇度量標準(如帶寬佔用、網絡路徑時延和平均訪問時間等)與蟻群信息素的映射,併對虛擬機實例負載狀況和虛擬機集群資源利用狀況進行量化評估,感知所鑑控的雲節點的資源度量情況;最後利用副本信息素概率計算式得到一組選擇副本資源的最優解,最終達到優化負載均衡的目的。經OpenStack 模式的雲平檯對新算法倣真實現,實驗結果錶明新算法成功實現瞭副本的有效分髮和虛擬機集群的負載均衡,與 Round Robin 和 Server Load 算法相比,新算法有更好的負載均衡效果。
침대운존저기술중부본선택우화문제,제출일충기우의군원리적운존저부본동태선택산법。구건기우의군적부본동태선택모형,건립부본선택도량표준(여대관점용、망락로경시연화평균방문시간등)여의군신식소적영사,병대허의궤실례부재상황화허의궤집군자원이용상황진행양화평고,감지소감공적운절점적자원도량정황;최후이용부본신식소개솔계산식득도일조선택부본자원적최우해,최종체도우화부재균형적목적。경OpenStack 모식적운평태대신산법방진실현,실험결과표명신산법성공실현료부본적유효분발화허의궤집군적부재균형,여 Round Robin 화 Server Load 산법상비,신산법유경호적부재균형효과。
This paper designed and analyzed a feasible,distributed,ant colony optimization algorithm based replica selection method on big data transferring in cloud storage,which was called pheromone-based ant colony replica selection algorithm in cloud storage (PARSA).PARSA provided a new,promising direction in cloud storage.This algorithm was different from the previously studied researches in three ways to make it more accurately reflective of cloud environment.It inclined multifactors to affect the efficiency of data accessing and processing in cloud,considered such as bandwidth,file accessing time and average delay as pheromones in PARSA.PARSA avoided a large-scale flat flooding and supports multi-attribute range query,which were accompanied by unstructured or structured P2P replica selection methods.Lastly,simulation results from cloud test bed based on OpenStack show that,compared by Round Robin and Server Load,PARSA can reduce data access latency and band-width consumption,and effectively achieve cloud load balancing between storage nodes and improve the speed of data access.