计算机应用研究
計算機應用研究
계산궤응용연구
Application Research of Computers
2015年
11期
3252-3255
,共4页
稀疏表示%低秩表示%子空间聚类%聚类融合%系数重建
稀疏錶示%低秩錶示%子空間聚類%聚類融閤%繫數重建
희소표시%저질표시%자공간취류%취류융합%계수중건
sparse representation%low rank representation%subspace clustering%clustering combination%coefficients recon-struction
针对稀疏子空间聚类(sparse subspace clustering,SSC)和低秩子空间聚类(low rank subspace clustering, LRSC)这两种子空间聚类方法的聚类准确率和稳定性不够高,提出一种基于重建系数的子空间聚类融合算法(reconstruction coefficients based subspace clustering combination algorithm,RCSCC)。该算法基于重建系数,将稀疏子空间聚类和低秩子空间聚类分别得到的相似度矩阵进行点乘融合运算,然后再用谱聚类来得到最后的聚类结果。实验结果表明,改进后的聚类融合算法不仅提高了聚类的准确率,还有效提高了聚类的稳定性和鲁棒性,从而验证了改进后的算法是有效可行的。
針對稀疏子空間聚類(sparse subspace clustering,SSC)和低秩子空間聚類(low rank subspace clustering, LRSC)這兩種子空間聚類方法的聚類準確率和穩定性不夠高,提齣一種基于重建繫數的子空間聚類融閤算法(reconstruction coefficients based subspace clustering combination algorithm,RCSCC)。該算法基于重建繫數,將稀疏子空間聚類和低秩子空間聚類分彆得到的相似度矩陣進行點乘融閤運算,然後再用譜聚類來得到最後的聚類結果。實驗結果錶明,改進後的聚類融閤算法不僅提高瞭聚類的準確率,還有效提高瞭聚類的穩定性和魯棒性,從而驗證瞭改進後的算法是有效可行的。
침대희소자공간취류(sparse subspace clustering,SSC)화저질자공간취류(low rank subspace clustering, LRSC)저량충자공간취류방법적취류준학솔화은정성불구고,제출일충기우중건계수적자공간취류융합산법(reconstruction coefficients based subspace clustering combination algorithm,RCSCC)。해산법기우중건계수,장희소자공간취류화저질자공간취류분별득도적상사도구진진행점승융합운산,연후재용보취류래득도최후적취류결과。실험결과표명,개진후적취류융합산법불부제고료취류적준학솔,환유효제고료취류적은정성화로봉성,종이험증료개진후적산법시유효가행적。
Aiming at the clustering accuracy and stability of SSC and LRSC are not high enough,this paper proposed a recon-struction coefficients based subspace clustering combination algorithm (RCSCC),which obtained the final similarity matrix based on point multiplication from the similarity matrixes got by sparse subspace clustering and low rank subspace clustering respectively,and then spectral clustering was done.Experimental results show that the improved algorithm can not only achieve higher accuracy,but also effectively improve the stability and robustness of clustering,which verifies that the im-proved algorithm is efficacious and feasible.