计算机应用研究
計算機應用研究
계산궤응용연구
Application Research of Computers
2015年
11期
3247-3251,3268
,共6页
静态聚类%演化聚类%联合矩阵%加权法%时间平滑%扩展性
靜態聚類%縯化聚類%聯閤矩陣%加權法%時間平滑%擴展性
정태취류%연화취류%연합구진%가권법%시간평활%확전성
static clustering%evolutionary clustering%co-association matrix%weighted algorithm%time smoothing%scalability
传统的演化聚类算法大多是基于单个时间截面进行问题求解,对于多时间截面的融合问题尚无有效的处理办法,造成了大量的知识浪费。从时间平滑框架出发,借鉴组合聚类思想,提出一种基于加权联合矩阵的演化聚类算法(WCEC)。实验表明,该方法不仅简单有效,而且对于数据点变化的演化情况具有较高的扩展性。
傳統的縯化聚類算法大多是基于單箇時間截麵進行問題求解,對于多時間截麵的融閤問題尚無有效的處理辦法,造成瞭大量的知識浪費。從時間平滑框架齣髮,藉鑒組閤聚類思想,提齣一種基于加權聯閤矩陣的縯化聚類算法(WCEC)。實驗錶明,該方法不僅簡單有效,而且對于數據點變化的縯化情況具有較高的擴展性。
전통적연화취류산법대다시기우단개시간절면진행문제구해,대우다시간절면적융합문제상무유효적처리판법,조성료대량적지식낭비。종시간평활광가출발,차감조합취류사상,제출일충기우가권연합구진적연화취류산법(WCEC)。실험표명,해방법불부간단유효,이차대우수거점변화적연화정황구유교고적확전성。
Compared with static clustering,evolutionary clustering can not only resist to the noise in short-term,but also re-flect the changing trend in long term.It has been widely used in dynamic community identification,financial product analysis and many other fields.Traditional evolutionary clustering focus on a single time step,while falls short of dealing with multiple ones.Based on the time smoothing framework,this paper put forward a weighted co-association matrix oriented evolutionary clustering(WCEC),which proved to be simple as well as scalable through experiments.