中国有色金属学报(英文版)
中國有色金屬學報(英文版)
중국유색금속학보(영문판)
Transactions of Nonferrous Metals Society of China
2015年
10期
3265-3270
,共6页
K. MURALEEDHARAN%Vijisha K. RAJAN%V. M. ABDUL MUJEEB
K. MURALEEDHARAN%Vijisha K. RAJAN%V. M. ABDUL MUJEEB
K. MURALEEDHARAN%Vijisha K. RAJAN%V. M. ABDUL MUJEEB
硫化物%ZnS%CdS%纳米结构%半导体%绿色合成%催化性能
硫化物%ZnS%CdS%納米結構%半導體%綠色閤成%催化性能
류화물%ZnS%CdS%납미결구%반도체%록색합성%최화성능
chalcogenide%ZnS%CdS%nanostructure%semiconductor%green synthesis%catalytic properties
采用化学水浴沉积方法制备纯ZnS、CdS及Cu或Ag掺杂ZnS、CdS纳米颗粒,整个过程没有使用任何覆盖剂和有毒化学试剂。该制备方法是一种简单的低成本绿色合成方法。XRD结果表明,所得纯ZnS、CdS及其掺杂体结晶良好,具有密排六方结构。采用Debye?Scherrer公式计算所有纳米颗粒的平均晶粒尺寸,发现未掺杂纳米颗粒的晶粒尺寸与掺杂样品的晶粒尺寸存在差别。CdS纳米颗粒的晶粒尺寸为5.5~2.2 nm,而ZnS纳米颗粒的晶粒尺寸为4.3~3.4 nm。紫外?可见光谱分析表明,CdS的能带宽为3.5~2.1 eV,ZnS的能带宽为3.3~2.7 eV。FTIR光谱中存在Cd—S、Cu—S、Ag—S和Zn—S的特征峰,表明样品中存在这些纳米颗粒。同时还观察到了与显微组织相应的峰。FE-SEM结果表明,所有样品都具有球状形貌。CdS:Cu和ZnS:Cu纳米粒子发生团聚,其尺寸分别为10~50 nm和50~100 nm。
採用化學水浴沉積方法製備純ZnS、CdS及Cu或Ag摻雜ZnS、CdS納米顆粒,整箇過程沒有使用任何覆蓋劑和有毒化學試劑。該製備方法是一種簡單的低成本綠色閤成方法。XRD結果錶明,所得純ZnS、CdS及其摻雜體結晶良好,具有密排六方結構。採用Debye?Scherrer公式計算所有納米顆粒的平均晶粒呎吋,髮現未摻雜納米顆粒的晶粒呎吋與摻雜樣品的晶粒呎吋存在差彆。CdS納米顆粒的晶粒呎吋為5.5~2.2 nm,而ZnS納米顆粒的晶粒呎吋為4.3~3.4 nm。紫外?可見光譜分析錶明,CdS的能帶寬為3.5~2.1 eV,ZnS的能帶寬為3.3~2.7 eV。FTIR光譜中存在Cd—S、Cu—S、Ag—S和Zn—S的特徵峰,錶明樣品中存在這些納米顆粒。同時還觀察到瞭與顯微組織相應的峰。FE-SEM結果錶明,所有樣品都具有毬狀形貌。CdS:Cu和ZnS:Cu納米粒子髮生糰聚,其呎吋分彆為10~50 nm和50~100 nm。
채용화학수욕침적방법제비순ZnS、CdS급Cu혹Ag참잡ZnS、CdS납미과립,정개과정몰유사용임하복개제화유독화학시제。해제비방법시일충간단적저성본록색합성방법。XRD결과표명,소득순ZnS、CdS급기참잡체결정량호,구유밀배륙방결구。채용Debye?Scherrer공식계산소유납미과립적평균정립척촌,발현미참잡납미과립적정립척촌여참잡양품적정립척촌존재차별。CdS납미과립적정립척촌위5.5~2.2 nm,이ZnS납미과립적정립척촌위4.3~3.4 nm。자외?가견광보분석표명,CdS적능대관위3.5~2.1 eV,ZnS적능대관위3.3~2.7 eV。FTIR광보중존재Cd—S、Cu—S、Ag—S화Zn—S적특정봉,표명양품중존재저사납미과립。동시환관찰도료여현미조직상응적봉。FE-SEM결과표명,소유양품도구유구상형모。CdS:Cu화ZnS:Cu납미입자발생단취,기척촌분별위10~50 nm화50~100 nm。
Nanoparticles of pure and Cu/Ag-doped CdS and ZnS have been synthesized via chemical bath deposition without using any capping or toxic reagents. The synthesis was carried out through a simple and less expensive green method. The XRD result shows that both pure CdS and ZnS and their doped derivatives are of high crystalline with hexagonal packing structure. The average crystalline size of all nanoparticles was calculated using Debye?Scherrer formula. The crystalline size of nanoparticles of pure samples varied with that of the doped sample. The average crystalline sizes of all nanoparticles are found to be in the range of 5.5?2.2 nm for CdS (from pure to doped) and 4.3?3.4 nm for ZnS, respectively. The band gap values obtained from UV-visible spectra are in the range of 3.5?2.1 eV for CdS and 3.3?2.7 eV for ZnS derivatives, respectively. The FTIR spectral data give characteristic peaks for Cd—S, Cu—S, Ag—S and Zn—S bonds and confirm the formation of respective nanoparticles. The peaks corresponding to the microstructural formation are also observed. The FE-SEM images show the granular morphological structure for all the samples. The agglomeration size of the samples in the range of 10?50 nm for CdS:Cu and 50?100 nm for ZnS:Cu is observed.