计算机应用与软件
計算機應用與軟件
계산궤응용여연건
Computer Applications and Software
2015年
10期
328-333
,共6页
粒子群(PSO)%加速参数自调整%通用物流配送
粒子群(PSO)%加速參數自調整%通用物流配送
입자군(PSO)%가속삼수자조정%통용물류배송
Particle swarm optimisation (PSO)%Acceleration factor self-adjustment%General optimisation of distribution
提出一种加速参数随个体适应值调整的改进粒子群(PSO)算法用来解决物流配送模型优化的多峰早熟问题。首先,从算法行为分析和向量分析的角度,根据当前粒子适应值和种群最优适应值设计一种简单实用的加速参数自调整策略。其次,通过理论和数值分析进而得到算法的全局收敛条件,为算法的实际应用提供理论基础。最后,结合改进 PSO 算法对物流配送模型进行研究。实验表明,基于个体适应值的加速参数变化策略对于 PSO 算法的“深度开发”和“全局探索”两个重要进化过程具有很好的平衡作用。算法的改进方式简单,未增加算法的时间复杂性,可以有效地对物流配送模型进行优化。
提齣一種加速參數隨箇體適應值調整的改進粒子群(PSO)算法用來解決物流配送模型優化的多峰早熟問題。首先,從算法行為分析和嚮量分析的角度,根據噹前粒子適應值和種群最優適應值設計一種簡單實用的加速參數自調整策略。其次,通過理論和數值分析進而得到算法的全跼收斂條件,為算法的實際應用提供理論基礎。最後,結閤改進 PSO 算法對物流配送模型進行研究。實驗錶明,基于箇體適應值的加速參數變化策略對于 PSO 算法的“深度開髮”和“全跼探索”兩箇重要進化過程具有很好的平衡作用。算法的改進方式簡單,未增加算法的時間複雜性,可以有效地對物流配送模型進行優化。
제출일충가속삼수수개체괄응치조정적개진입자군(PSO)산법용래해결물류배송모형우화적다봉조숙문제。수선,종산법행위분석화향량분석적각도,근거당전입자괄응치화충군최우괄응치설계일충간단실용적가속삼수자조정책략。기차,통과이론화수치분석진이득도산법적전국수렴조건,위산법적실제응용제공이론기출。최후,결합개진 PSO 산법대물류배송모형진행연구。실험표명,기우개체괄응치적가속삼수변화책략대우 PSO 산법적“심도개발”화“전국탐색”량개중요진화과정구유흔호적평형작용。산법적개진방식간단,미증가산법적시간복잡성,가이유효지대물류배송모형진행우화。
We presented an improved particle swarm optimisation (PSO)algorithm with the acceleration parameters adjusted according to the individual fitness value,which is used to solve the multimodal premature problem of logistics distribution optimisation model.First,from the perspectives of algorithm behaviour analysis and vector analysis,we design a simple and practical acceleration parameters self-adjustment strategy according to current particle fitness and population optimal fitness value.Secondly,through theoretical and numerical analyses we get the global convergence conditions of the algorithm,and provide the theoretical basis for the practical applications of the algorithm.Finally,we study the logistics distribution model in combination with the improved PSO algorithm.Experiments show that the acceleration parameters self-adaptation strategy based on individual fitness value has good balance role on two important evolution processes of PSO in "deep development"and "global exploration".The improvement way of the algorithm is simple,without increasing its time complexity,and can effectively opti-mise the logistics distribution model.