载人航天
載人航天
재인항천
MANNED SPACEFLIGHT
2015年
5期
503-509
,共7页
刘岩%张雄%刘平%廉艳平%马上%宫伟伟%王汉奎
劉巖%張雄%劉平%廉豔平%馬上%宮偉偉%王漢奎
류암%장웅%류평%렴염평%마상%궁위위%왕한규
空间碎片%超高速碰撞%无网格法%物质点法%仿真软件
空間碎片%超高速踫撞%無網格法%物質點法%倣真軟件
공간쇄편%초고속팽당%무망격법%물질점법%방진연건
space debris%hyper-velocity impact%meshfree methods%material point method%simula-tion software
空间碎片超高速撞击的防护是航天器结构设计须重点考虑的问题,超高速撞击过程的极强非线性对传统数值方法提出了巨大挑战. 作为新兴的无网格法的一种,物质点法易于处理超大变形、断裂破碎和高速碰撞中的大量接触过程,非常适合求解超高速碰撞问题. 对物质点法的算法理论进行了多项改进,自主研发了三维物质点法软件系统MPM3D,从多个角度模拟分析了空间碎片的超高速碰撞问题. 模拟结果与实验吻合良好,能够正确再现开坑、层裂、碎片云等超高速碰撞典型现象,易于通过材料内禀结构建模研究泡沫、蜂窝等材料的撞击吸能和防护能力,显示出物质点法及其软件系统可以作为超高速碰撞的有力数值分析手段.
空間碎片超高速撞擊的防護是航天器結構設計鬚重點攷慮的問題,超高速撞擊過程的極彊非線性對傳統數值方法提齣瞭巨大挑戰. 作為新興的無網格法的一種,物質點法易于處理超大變形、斷裂破碎和高速踫撞中的大量接觸過程,非常適閤求解超高速踫撞問題. 對物質點法的算法理論進行瞭多項改進,自主研髮瞭三維物質點法軟件繫統MPM3D,從多箇角度模擬分析瞭空間碎片的超高速踫撞問題. 模擬結果與實驗吻閤良好,能夠正確再現開坑、層裂、碎片雲等超高速踫撞典型現象,易于通過材料內稟結構建模研究泡沫、蜂窩等材料的撞擊吸能和防護能力,顯示齣物質點法及其軟件繫統可以作為超高速踫撞的有力數值分析手段.
공간쇄편초고속당격적방호시항천기결구설계수중점고필적문제,초고속당격과정적겁강비선성대전통수치방법제출료거대도전. 작위신흥적무망격법적일충,물질점법역우처리초대변형、단렬파쇄화고속팽당중적대량접촉과정,비상괄합구해초고속팽당문제. 대물질점법적산법이론진행료다항개진,자주연발료삼유물질점법연건계통MPM3D,종다개각도모의분석료공간쇄편적초고속팽당문제. 모의결과여실험문합량호,능구정학재현개갱、층렬、쇄편운등초고속팽당전형현상,역우통과재료내품결구건모연구포말、봉와등재료적당격흡능화방호능력,현시출물질점법급기연건계통가이작위초고속팽당적유력수치분석수단.
Shielding hyper-velocity impact ( HVI) from space debris is of great concern in the de-sign of spacecraft, while strong nonlinearities in HVI process pose great challenges to traditional nu-merical methods. As one kind of recently developed meshfree methods, material point method ( MPM) can easily deal with extremely large deformation, fracture and fragmentation, and large number of contacts appearing in HVI process. Owing to the above advantages, MPM is very suitable for solving HVI problems. In recent years, the authors improved MPM theory in several aspects, de-veloped three-dimensional MPM software system MPM3D, and numerically investigated HVI process of space debris in detail. Numerical results agree well with experimental results. Typical phenomena including excavation, spalling, and debris cloud can be reproduced correctly. The energy absorption and shielding capability of foam material and honeycomb material can be easily studied based on models of material internal structure. The above simulations demonstrate that MPM and MPM3D software are powerful numerical tools for HVI problems.