金刚石与磨料磨具工程
金剛石與磨料磨具工程
금강석여마료마구공정
Diamond & Abrasives Engineering
2015年
5期
1-4,14
,共5页
邓福铭%张怡%詹昶%李丹%陆绍悌%王强
鄧福銘%張怡%詹昶%李丹%陸紹悌%王彊
산복명%장이%첨창%리단%륙소제%왕강
纳米金刚石%表面改性%表面结构
納米金剛石%錶麵改性%錶麵結構
납미금강석%표면개성%표면결구
nano-diamond%surface modification%surface structure
利用强氧化性酸和真空热处理对尺寸为50 nm 的金刚石微粉进行表面改性处理并进行研究。通过 XRD 、Raman 、TG‐DTA 以及 FTIR 等分析手段测试了纳米金刚石的表面结构和耐热性能。研究结果表明:这一工艺可以去除纳米金刚石表面大部分吸附杂质,提高耐热性能,但羟基和羰基等基团难以去除。
利用彊氧化性痠和真空熱處理對呎吋為50 nm 的金剛石微粉進行錶麵改性處理併進行研究。通過 XRD 、Raman 、TG‐DTA 以及 FTIR 等分析手段測試瞭納米金剛石的錶麵結構和耐熱性能。研究結果錶明:這一工藝可以去除納米金剛石錶麵大部分吸附雜質,提高耐熱性能,但羥基和羰基等基糰難以去除。
이용강양화성산화진공열처리대척촌위50 nm 적금강석미분진행표면개성처리병진행연구。통과 XRD 、Raman 、TG‐DTA 이급 FTIR 등분석수단측시료납미금강석적표면결구화내열성능。연구결과표명:저일공예가이거제납미금강석표면대부분흡부잡질,제고내열성능,단간기화탄기등기단난이거제。
The surface of nano‐diamond particles ( 50 nm) was modified by strong acid , and pretreated by heat treatment in vacuum . The nano‐diamond surface structure was characterized by X‐ray diffraction ( XRD ) , Raman spectroscopy and Fourier transform infrared spectroscopy ( FTIR ) . The thermogravimetric‐differential thermal analysis( TG‐DTA) was used to investigate the heat resistance of nano‐diamond . The results showed that this method could remove most impurities on the surface of nano‐diamond and raise the heat resistance of nano‐diamond . But some groups were difficult to remove , such as the hydroxyl and carbonyl groups .