稀土学报(英文版)
稀土學報(英文版)
희토학보(영문판)
Journal of Rare Earths
2015年
10期
1104-1113
,共10页
adsorption of fluoride%chitosan%isothermsstudies%kinetics study%praseodymium%rare earths
Engineering of chitosan by praseodymium has been investigated to improve the adsorption properties as well as physical characteristics of chitosan. Modification of chitosan changes the original properties of chitosan so that it can be more suitable for ad-sorption of fluoride ions. In this study, chitosan-praseodymium (Chi-Pr) was synthesized by impregnation method. The Chi-Pr com-plex was characterized by scanning electron microscopic-energy dispersive X-ray spectroscopy (SEM-EDX), Fourier transform in-frared (FTIR) and employed as an adsorbent for removal of fluorides ions from water in the batch system. The variables such as con-tact time, concentration of Pr, adsorbent dose, initial concentration of fluoride ions, and competitor anions were studied. The adsorp-tion efficiency of fluoride ions (η) with increasing Pr loading into chitosan (5 wt.%, 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%) were 35.5%, 56.1%, 72.0%, 68.5% and 62.5%, respectively. The Chi-Pr (15 wt.%) complex had the highest fluoride removal efficiency (72.0%). The experimental data fitted well to the Langmuir isotherm with maximum adsorption capacity (qmax) of 15.87 mg/g and an equilibrium constant (kL) of 0.15 mg. Kinetic study revealed that the adsorption of fluoride ions from water followed pseudo-second-order model with a maximum adsorption capacity (q2) of 8.20 mg/g and a rate constant (k2) of 0.01 g/mg·min. Ad-sorption efficiency of fluoride ions in the simulated drinking water was diminished with the changes in pH levels. The presence of Pr3+in chitosan increased chitosan's performance as an adsorbent for adsorption of fluoride ions.