山东理工大学学报(自然科学版)
山東理工大學學報(自然科學版)
산동리공대학학보(자연과학판)
Journal of Shandong University of Technology (Natural Science Edition)
2015年
6期
20-24
,共5页
杨振%张耀明%周爱华%潘月君
楊振%張耀明%週愛華%潘月君
양진%장요명%주애화%반월군
基本解法%反问题%截断奇异值法%Tikhonov法%L曲线%GCV
基本解法%反問題%截斷奇異值法%Tikhonov法%L麯線%GCV
기본해법%반문제%절단기이치법%Tikhonov법%L곡선%GCV
M FS%inverse problems%truncated singular value decomposition%Tikhonov method%L-curve%GCV
针对基本解法在求解反问题时的病态特性,将截断奇异值分解(TSVD)、Tikhonov正则化方法应用于所得病态系统方程的求解,采用L曲线法和GCV方法确定其正则参数,并比较了4种组合方法求解的精确性和稳定性。数值算例表明,TSVD方法、Tikhonov正则化方法结合L曲线法和GCV法可有效地处理反问题中的病态特性。
針對基本解法在求解反問題時的病態特性,將截斷奇異值分解(TSVD)、Tikhonov正則化方法應用于所得病態繫統方程的求解,採用L麯線法和GCV方法確定其正則參數,併比較瞭4種組閤方法求解的精確性和穩定性。數值算例錶明,TSVD方法、Tikhonov正則化方法結閤L麯線法和GCV法可有效地處理反問題中的病態特性。
침대기본해법재구해반문제시적병태특성,장절단기이치분해(TSVD)、Tikhonov정칙화방법응용우소득병태계통방정적구해,채용L곡선법화GCV방법학정기정칙삼수,병비교료4충조합방법구해적정학성화은정성。수치산례표명,TSVD방법、Tikhonov정칙화방법결합L곡선법화GCV법가유효지처리반문제중적병태특성。
In order to resolve ill-conditioned problems existing in the regularization M FS for the 2D boundary conditions identification potential problems ,suitable regularization methods are nee‐ded .The truncated singular value decomposition (TSVD )method and Tikhonov regularization method are used to solve linear systems with a large number of conditions respectively .The L-curve and generalized cross validation (GCV ) methods are employed to determine the optimal reg‐ularization parameters .Furthermore ,the accuracy and robustness of regularization solution for four combined methods are investigated .Numerical results show that TSVD method and Tik‐honov method can effectively solve the ill posed system caused by inverse problems .Through ap‐plying to L-curve method and GCV method ,continuous regularization parameter for Tikhonov method can be confirmed reasonably .