电力系统自动化
電力繫統自動化
전력계통자동화
Automation of Electric Power Systems
2015年
20期
26-31
,共6页
茆美琴%奚媛媛%张榴晨%金鹏%徐海波
茆美琴%奚媛媛%張榴晨%金鵬%徐海波
묘미금%해원원%장류신%금붕%서해파
微网(微电网)%Q学习%多代理%协调控制%频率控制
微網(微電網)%Q學習%多代理%協調控製%頻率控製
미망(미전망)%Q학습%다대리%협조공제%빈솔공제
microgrid%Q-learning%multi-agent%coordinated control%frequency control
由于包含微源的多样性及运行模式的多样性,微网的二次频率控制面临着系统参数不确定性的挑战。文中提出了在多代理(Agent)分层混合控制模型中嵌入一种基于 Q 学习的智能算法。首先,动态预测出微网系统实时二次调频功率缺额值。其次,同时考虑微网运行经济性和环境效益,并采用模糊化方法和粒子群优化算法实现二次调度功率的分配。最后,在 C++Builder 环境下搭建了包括不同微源的本地层 Agent 和具有不同控制功能的中央层 Agent 的微网混合能量管理仿真平台,结果证明了所提出的基于 Q 学习的微网二次频率自适应控制器可以自适应微网系统结构及其参数的动态变化,实现微网二次调频的智能控制。
由于包含微源的多樣性及運行模式的多樣性,微網的二次頻率控製麵臨著繫統參數不確定性的挑戰。文中提齣瞭在多代理(Agent)分層混閤控製模型中嵌入一種基于 Q 學習的智能算法。首先,動態預測齣微網繫統實時二次調頻功率缺額值。其次,同時攷慮微網運行經濟性和環境效益,併採用模糊化方法和粒子群優化算法實現二次調度功率的分配。最後,在 C++Builder 環境下搭建瞭包括不同微源的本地層 Agent 和具有不同控製功能的中央層 Agent 的微網混閤能量管理倣真平檯,結果證明瞭所提齣的基于 Q 學習的微網二次頻率自適應控製器可以自適應微網繫統結構及其參數的動態變化,實現微網二次調頻的智能控製。
유우포함미원적다양성급운행모식적다양성,미망적이차빈솔공제면림착계통삼수불학정성적도전。문중제출료재다대리(Agent)분층혼합공제모형중감입일충기우 Q 학습적지능산법。수선,동태예측출미망계통실시이차조빈공솔결액치。기차,동시고필미망운행경제성화배경효익,병채용모호화방법화입자군우화산법실현이차조도공솔적분배。최후,재 C++Builder 배경하탑건료포괄불동미원적본지층 Agent 화구유불동공제공능적중앙층 Agent 적미망혼합능량관리방진평태,결과증명료소제출적기우 Q 학습적미망이차빈솔자괄응공제기가이자괄응미망계통결구급기삼수적동태변화,실현미망이차조빈적지능공제。
Because of the diversity of micro-sources and operation modes in a microgrid,secondary frequency control faces great challenges from the uncertainty of system parameters of the microgrid.To solve the problem,a Q-learning intelligent algorithm integrated in the hierarchical multi-agent model is proposed.Firstly,by the proposed method,the power to be regulated,which is called the microgrid regulation error (MRE),is dynamically calculated in the secondary control for real-time operation.Secondly,the generation schedule of distributed generators and batteries is modified in real-time with the MRE by the fuzzy theory and particle swarm optimization method by taking both economy and environmental benefits into consideration.Finally, a Q-learning algorithm based multi-agent hybrid energy management system for the microgrid simulation platform in terms of client-server frame is established in C++ Builder.Simulation results have verified that by the proposed Q-Learning method,secondary intelligent and adaptive frequency control is realized under the condition of variable structure and parameters in the microgrid.