中国炼油与石油化工(英文版)
中國煉油與石油化工(英文版)
중국련유여석유화공(영문판)
China Petroleum Processing and Petrochemical Technology
2015年
3期
67-75
,共9页
ZrO2 polycrystalline ceramic foam catalyst%tubular reactor%S. wilsoniana oil%biodiesel
With the help of the ceramic foam research efforts and preparation techniques, the ZrO2 polycrystalline ceramic foam catalyst was synthesized, and its characteristics, including the crystal structure, the phase composition, the acid–base properties, and the microstructure, were analyzed by XRD, SEM, Py-IR, and BET techniques. The performance of the ZrO2 polycrystalline ceramic foam catalyst in a tubular reactor was investigated via biodiesel synthesis using S. wilsoniana oil and methanol. The effects of reaction conditions (i.e., reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil) on transesteriifcation efifciency were investigated, and the reaction conditions were optimized using RSM. The optimum reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil were de-termined to be 290℃, 10 MPa, and 4:1, respectively. Under this condition, the FAME content in the product oil reached 98.38%. The performance of the ZrO2 polycrystalline ceramic foam catalyst synthesized in this work for biodiesel synthesis from S. wilsoniana oil with a moisture content of 7.1%and an acid value of 130.697 mg KOH/g was examined, and the FAME content in the product oil was found to be 93%and 97.67%, respectively. The FAME content in the product oil ex-ceeded 97%after ifve consecutive cycles (12 h per cycle of use) of the catalyst. The proposed catalyst represents a new type of solid catalyst with excellent acid resistance, water resistance, esteriifcation efifciency, and catalytic stability.