空军工程大学学报(自然科学版)
空軍工程大學學報(自然科學版)
공군공정대학학보(자연과학판)
Journal of Air Force Engineering University (Natural Science Edition)
2015年
5期
24-27
,共4页
阳杰%雷晓犇%李曙伟%刘兴文
暘傑%雷曉犇%李曙偉%劉興文
양걸%뢰효분%리서위%류흥문
六相永磁容错电机%故障预测%灰色模型%强化缓冲算子
六相永磁容錯電機%故障預測%灰色模型%彊化緩遲算子
륙상영자용착전궤%고장예측%회색모형%강화완충산자
six??phase permanent magnet fault tolerant motor%fault prediction%grey model%strengthening buffer operator
永磁容错电机属于高阶非线性强耦合的复杂系统,受到外界干扰后,提取的故障特征信号容易失真。针对永磁容错电机系统受到外在冲击时,传统灰色模型故障预测精度不高的问题,提出了一种新的故障预测改进方法。采用强化缓冲算子对数据序列进行处理,还原数据,排除冲击干扰,而后通过建立的 GM(1,1)基本模型对故障能量特征数据序列进行预测。结果表明,故障原始序列经过各类强化缓冲算子作用后,预测精度提高到96.3%以上,预测相对误差较原始序列基本模型平均降低了43.06%,有效提高了行为数据的故障预测精度。
永磁容錯電機屬于高階非線性彊耦閤的複雜繫統,受到外界榦擾後,提取的故障特徵信號容易失真。針對永磁容錯電機繫統受到外在遲擊時,傳統灰色模型故障預測精度不高的問題,提齣瞭一種新的故障預測改進方法。採用彊化緩遲算子對數據序列進行處理,還原數據,排除遲擊榦擾,而後通過建立的 GM(1,1)基本模型對故障能量特徵數據序列進行預測。結果錶明,故障原始序列經過各類彊化緩遲算子作用後,預測精度提高到96.3%以上,預測相對誤差較原始序列基本模型平均降低瞭43.06%,有效提高瞭行為數據的故障預測精度。
영자용착전궤속우고계비선성강우합적복잡계통,수도외계간우후,제취적고장특정신호용역실진。침대영자용착전궤계통수도외재충격시,전통회색모형고장예측정도불고적문제,제출료일충신적고장예측개진방법。채용강화완충산자대수거서렬진행처리,환원수거,배제충격간우,이후통과건립적 GM(1,1)기본모형대고장능량특정수거서렬진행예측。결과표명,고장원시서렬경과각류강화완충산자작용후,예측정도제고도96.3%이상,예측상대오차교원시서렬기본모형평균강저료43.06%,유효제고료행위수거적고장예측정도。
A study of the fault prediction problem of permanent magnet fault??tolerant motor equipped in the aircraft actuation system is advantageous to monitoring aircraft health status accurately,and providing de-cision support for aircraft maintenance.For a permanent magnet fault??tolerant motor system in case of a hit from the outside,the traditional grey model is not high prediction accuracy.A new improved forecast method based on grey theory is proposed in the paper.The permanent magnet fault??tolerant motor is a complex system belonging to high order,nonlinear and strong coupling.The paper adopts a strengthening buffer operator to deal with data sequence,restore data,eliminate the interference of shock,and forecast the failure energy data sequence through the establishment of the basic model.The results show that the o-riginal sequence is processed by strengthening buffer operator,the prediction accuracy is increased to 96.3% above,the relative prediction error is reduced by 43.06% on average compared to the primitive se-quence basic model,and the fault prediction of the behavior is improved effectively.