华南理工大学学报(自然科学版)
華南理工大學學報(自然科學版)
화남리공대학학보(자연과학판)
Journal of South China University of Technology (Natural Science Edition)
2015年
9期
141-148
,共8页
压气机%优化设计%网格变形%响应面%多目标遗传算法
壓氣機%優化設計%網格變形%響應麵%多目標遺傳算法
압기궤%우화설계%망격변형%향응면%다목표유전산법
compressor%optimum design%mesh deformation%response surface%multi-objective genetic algorithm
压气机叶片的传统优化设计存在设计变量多和优化周期长等不足.为此,文中利用非均匀有理 B 样条基函数建立了转子流场网格自由变形参数化方法,并结合改进的拉丁超立方试验设计、Kriging 响应面模型及 NSGA-Ⅱ多目标遗传算法构建了转子叶片的气动优化设计体系.计算结果表明:在98%的堵塞质量流量工况下,优化后的叶片总压比提高了0.33%,等熵效率提高了0.83%;优化后压气机转子形状为前倾型叶片,提升了转子性能,降低了激波损失;与传统优化设计方法相比,文中优化体系的设计变量明显减少,缩短了优化设计周期.
壓氣機葉片的傳統優化設計存在設計變量多和優化週期長等不足.為此,文中利用非均勻有理 B 樣條基函數建立瞭轉子流場網格自由變形參數化方法,併結閤改進的拉丁超立方試驗設計、Kriging 響應麵模型及 NSGA-Ⅱ多目標遺傳算法構建瞭轉子葉片的氣動優化設計體繫.計算結果錶明:在98%的堵塞質量流量工況下,優化後的葉片總壓比提高瞭0.33%,等熵效率提高瞭0.83%;優化後壓氣機轉子形狀為前傾型葉片,提升瞭轉子性能,降低瞭激波損失;與傳統優化設計方法相比,文中優化體繫的設計變量明顯減少,縮短瞭優化設計週期.
압기궤협편적전통우화설계존재설계변량다화우화주기장등불족.위차,문중이용비균균유리 B 양조기함수건립료전자류장망격자유변형삼수화방법,병결합개진적랍정초립방시험설계、Kriging 향응면모형급 NSGA-Ⅱ다목표유전산법구건료전자협편적기동우화설계체계.계산결과표명:재98%적도새질량류량공황하,우화후적협편총압비제고료0.33%,등적효솔제고료0.83%;우화후압기궤전자형상위전경형협편,제승료전자성능,강저료격파손실;여전통우화설계방법상비,문중우화체계적설계변량명현감소,축단료우화설계주기.
There exist the defects of multi design variables and long optimization cycle in the traditional optimum design of compressor blades.In order to solve these problems,this paper proposes a free-form mesh deformation pa-rameterization method of fluid grids by using a non-uniform rational B-spline basis function,and constructs an de-sign system of aerodynamic optimization of rotor blades by combining the advanced design of Latin hypercube sam-pling experiments,the Kriging response surface model and the NSGA-Ⅱmulti-objective genetic algorithm.Calculation results show that (1)the optimized blade has a total pressure ratio improvement by 0.33% and an isentropic efficien-cy improvement by 0.83% at a choke mass flow of 98%;(2)the optimized blade is a forward-leaned blade,which helps reduce the shock loss and improve the performance of the rotor;and (3)in comparison with the traditional op-timization design method,the proposed optimization system reduces design variables and shortens optimized cycles.