科技通报
科技通報
과기통보
Bulletin of Science and Technology
2015年
10期
190-192
,共3页
人脸检测%身份验证%特征提取
人臉檢測%身份驗證%特徵提取
인검검측%신빈험증%특정제취
face detection%identification%feature extraction
传统的AdaBoost人脸检测算法训练时间长对设备要求高,在复杂背景下存在漏检误检.提出一种基于小波重构和特征提取的AdaBoost人脸检测算法,并应用到身份验证中.采用小波重构方法,实现对人脸信息有用特征的重构,进行去噪处理提高人脸识别的准确性.采用人脸特征关联性方法将不同的人脸特征子集进行分类处理,采用特征提取算法实现对AdaBoost算法的改进.仿真结果表明,采用改进的人脸检测算法进行身份验证,能检测到一定范围内的非正脸图像特征,有效提取人脸的局部信息特征点,提高身份验证对象的检测精度和正确识别率.
傳統的AdaBoost人臉檢測算法訓練時間長對設備要求高,在複雜揹景下存在漏檢誤檢.提齣一種基于小波重構和特徵提取的AdaBoost人臉檢測算法,併應用到身份驗證中.採用小波重構方法,實現對人臉信息有用特徵的重構,進行去譟處理提高人臉識彆的準確性.採用人臉特徵關聯性方法將不同的人臉特徵子集進行分類處理,採用特徵提取算法實現對AdaBoost算法的改進.倣真結果錶明,採用改進的人臉檢測算法進行身份驗證,能檢測到一定範圍內的非正臉圖像特徵,有效提取人臉的跼部信息特徵點,提高身份驗證對象的檢測精度和正確識彆率.
전통적AdaBoost인검검측산법훈련시간장대설비요구고,재복잡배경하존재루검오검.제출일충기우소파중구화특정제취적AdaBoost인검검측산법,병응용도신빈험증중.채용소파중구방법,실현대인검신식유용특정적중구,진행거조처리제고인검식별적준학성.채용인검특정관련성방법장불동적인검특정자집진행분류처리,채용특정제취산법실현대AdaBoost산법적개진.방진결과표명,채용개진적인검검측산법진행신빈험증,능검측도일정범위내적비정검도상특정,유효제취인검적국부신식특정점,제고신빈험증대상적검측정도화정학식별솔.
The traditional face detection algorithm needs much training time, and has high requirements for equipment,and there are false detection in complex background. An AdaBoost face detection algorithm is proposed based on wavelet recon-struction and feature extraction, and it is applied in identity verification. By using the wavelet reconstruction method, the re-construction of useful face information features is obtained, denoising processing is used to improve the accuracy of face recognition. The facial feature relevance method is used, and the different features of face are classified in different sets. The feature extraction algorithm is used to improve the AdaBoost face detection algorithm. Simulation results show that,the new method can detect the non frontal face image features within a certain range, and the detection precision and accurate recognition rate are improved.