科技通报
科技通報
과기통보
Bulletin of Science and Technology
2015年
10期
7-9
,共3页
成本控制%非线性%泰勒级数展开
成本控製%非線性%泰勒級數展開
성본공제%비선성%태륵급수전개
cost control%nonlinear%Taylor series expansion
采用非线性平稳泰勒级数展开实现对非线性经济数据序列的特征分解,实现经济成本数学模型构建和预测控制.非线性平稳泰勒组合数学模型对大规模海量数据集的处理和训练方面具有其独特的优势,制约成本控制运算的一个重要难题是解决非线性平稳泰勒级数展开问题和稳定性分解问题.提出一种基于非线性平稳泰勒级数分解的成本控制数学模型.采用大数剩余定理对双线性化常微分方程进行稳定性分析,构建制造部门利润收益分配线性规划博弈问题,通过非线性平稳泰勒级数得到成本控制约束函数,把成本控制模型的非线性松弛解算子进行敏感域分析表征,由此实现非线性平稳泰勒级数分解的成本控制模型构建.推导得出,该模型具有全局收敛和渐进稳定性,实现成本最小和利润最大.
採用非線性平穩泰勒級數展開實現對非線性經濟數據序列的特徵分解,實現經濟成本數學模型構建和預測控製.非線性平穩泰勒組閤數學模型對大規模海量數據集的處理和訓練方麵具有其獨特的優勢,製約成本控製運算的一箇重要難題是解決非線性平穩泰勒級數展開問題和穩定性分解問題.提齣一種基于非線性平穩泰勒級數分解的成本控製數學模型.採用大數剩餘定理對雙線性化常微分方程進行穩定性分析,構建製造部門利潤收益分配線性規劃博弈問題,通過非線性平穩泰勒級數得到成本控製約束函數,把成本控製模型的非線性鬆弛解算子進行敏感域分析錶徵,由此實現非線性平穩泰勒級數分解的成本控製模型構建.推導得齣,該模型具有全跼收斂和漸進穩定性,實現成本最小和利潤最大.
채용비선성평은태륵급수전개실현대비선성경제수거서렬적특정분해,실현경제성본수학모형구건화예측공제.비선성평은태륵조합수학모형대대규모해량수거집적처리화훈련방면구유기독특적우세,제약성본공제운산적일개중요난제시해결비선성평은태륵급수전개문제화은정성분해문제.제출일충기우비선성평은태륵급수분해적성본공제수학모형.채용대수잉여정리대쌍선성화상미분방정진행은정성분석,구건제조부문리윤수익분배선성규화박혁문제,통과비선성평은태륵급수득도성본공제약속함수,파성본공제모형적비선성송이해산자진행민감역분석표정,유차실현비선성평은태륵급수분해적성본공제모형구건.추도득출,해모형구유전국수렴화점진은정성,실현성본최소화리윤최대.
Using the nonlinear stationary Taylor series expansion decomposition characteristics of nonlinear economic data series, to realize the economic cost of the construction of mathematical model and predictive control. With its unique advan-tages in processing and training aspects of nonlinear stationary Taylor combined mathematical model for massive data sets, an important problem to restrict the operation cost control is to solve the nonlinear stationary Taylor series expansion and the stability in the decomposition of the problem. Put forward a kind of control mathematical model of decomposition of non-linear stationary Taylor series based on cost. Using a large number of surplus theorem of double linear ordinary differential equations of stability analysis, get the department profit income distribution linear programming game problems of manufac-turing, cost control constraint functions are obtained by the nonlinear stationary Taylor series, the nonlinear relaxation cost control model of the solution operator for sensitive domain characterization, the decomposition of nonlinear stationary Tay-lor series model is constructed to achieve cost control. Is derived, the model has the global convergence and asymptotic sta-bility, minimum cost and maximum profit.